Instructions for use
The following coverage policy applies to health benefit plans administered by Cigna. Coverage policies are intended to provide guidance in interpreting certain standard Cigna benefit plans and are used by medical directors and other health care professionals in making medical necessity and other coverage determinations. Please note the terms of a customer’s particular benefit plan document may differ significantly from the standard benefit plans upon which these coverage policies are based. For example, a customer’s benefit plan document may contain a specific exclusion related to a topic addressed in a coverage policy.

In the event of a conflict, a customer’s benefit plan document always supersedes the information in the coverage policy. In the absence of federal or state coverage mandates, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of:

1. The terms of the applicable benefit plan document in effect on the date of service
2. Any applicable laws and regulations
3. Any relevant collateral source materials including coverage policies
4. The specific facts of the particular situation

Coverage policies relate exclusively to the administration of health benefit plans. Coverage policies are not recommendations for treatment and should never be used as treatment guidelines.

This evidence-based medical coverage policy has been developed by eviCore, Inc. Some information in this coverage policy may not apply to all benefit plans administered by Cigna.

CPT® (Current Procedural Terminology) is a registered trademark of the American Medical Association (AMA). CPT® five digit codes, nomenclature and other data are copyright 2015 American Medical Association. All Rights Reserved. No fee schedules, basic units, relative values or related listings are included in the CPT® book. AMA does not directly or indirectly practice medicine or dispense medical services. AMA assumes no liability for the data contained herein or not contained herein.

©Copyright 2015 eviCore healthcare
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACONC-1 - General Guidelines</td>
<td>4</td>
</tr>
<tr>
<td>PACONC-2 - Screening Imaging in Cancer Predisposition Syndromes</td>
<td>10</td>
</tr>
<tr>
<td>PACONC-3 - Pediatric Leukemias</td>
<td>23</td>
</tr>
<tr>
<td>PACONC-4 - Pediatric CNS Tumors</td>
<td>26</td>
</tr>
<tr>
<td>PACONC-5 - Pediatric Lymphomas</td>
<td>49</td>
</tr>
<tr>
<td>PACONC-6 - Neuroblastoma</td>
<td>56</td>
</tr>
<tr>
<td>PACONC-7 - Pediatric Renal Tumors</td>
<td>64</td>
</tr>
<tr>
<td>PACONC-8 - Pediatric Soft Tissue Sarcomas</td>
<td>76</td>
</tr>
<tr>
<td>PACONC-9 - Bone Tumors</td>
<td>82</td>
</tr>
<tr>
<td>PACONC-10 - Pediatric Germ Cell Tumors</td>
<td>91</td>
</tr>
<tr>
<td>PACONC-11 - Pediatric Liver Tumors</td>
<td>94</td>
</tr>
<tr>
<td>PACONC-12 - Retinoblastoma</td>
<td>99</td>
</tr>
<tr>
<td>PACONC-13 - Pediatric Nasopharyngeal Carcinoma</td>
<td>101</td>
</tr>
<tr>
<td>PACONC-14 - Pediatric Adrenocortical Carcinoma</td>
<td>103</td>
</tr>
<tr>
<td>PACONC-15 - Pediatric Melanoma and Other Skin Cancers</td>
<td>105</td>
</tr>
<tr>
<td>PACONC-16 - Pediatric Salivary Gland Tumors</td>
<td>106</td>
</tr>
<tr>
<td>PACONC-17 - Pediatric Breast Masses</td>
<td>107</td>
</tr>
<tr>
<td>PACONC-18 - Pediatric Histocytic Disorders</td>
<td>108</td>
</tr>
<tr>
<td>PACONC-19 - Imaging Studies in Long Term Pediatric Cancer Survivors</td>
<td>116</td>
</tr>
</tbody>
</table>
ABBREVIATIONS for PEDIATRIC ONCOLOGY IMAGING GUIDELINES

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP</td>
<td>alpha-fetoprotein (tumor marker)</td>
</tr>
<tr>
<td>ALCL</td>
<td>Anaplastic Large Cell Lymphoma</td>
</tr>
<tr>
<td>ALL</td>
<td>Acute Lymphoblastic Leukemia</td>
</tr>
<tr>
<td>AML</td>
<td>Acute Myelogenous Leukemia</td>
</tr>
<tr>
<td>β-hCG</td>
<td>human chorionic gonadotropin beta-subunit (tumor marker)</td>
</tr>
<tr>
<td>BKL</td>
<td>Burkitt’s lymphoma</td>
</tr>
<tr>
<td>BWT</td>
<td>bilateral Wilms tumor</td>
</tr>
<tr>
<td>CCSK</td>
<td>Clear Cell Sarcoma of the Kidney</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>COG</td>
<td>Children’s Oncology Group</td>
</tr>
<tr>
<td>CPT®</td>
<td>Current Procedural Terminology; trademark of the American Medical Association</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>CXR</td>
<td>chest x-ray</td>
</tr>
<tr>
<td>DAWT</td>
<td>diffuse anaplasia Wilms tumor</td>
</tr>
<tr>
<td>ESFT</td>
<td>Ewing Sarcoma Family of Tumors</td>
</tr>
<tr>
<td>FAWT</td>
<td>focal anaplasia Wilms tumor</td>
</tr>
<tr>
<td>FHWT</td>
<td>favorable histology Wilms tumor</td>
</tr>
<tr>
<td>HL</td>
<td>Hodgkin lymphoma</td>
</tr>
<tr>
<td>HSCT</td>
<td>hematopoietic stem cell transplant (bone marrow or peripheral blood)</td>
</tr>
<tr>
<td>HVA</td>
<td>homovanillic acid</td>
</tr>
<tr>
<td>LL</td>
<td>lymphoblastic lymphoma</td>
</tr>
<tr>
<td>MIBG</td>
<td>metaiodobenzylguanidine (nuclear scan using 123I or 131I)</td>
</tr>
<tr>
<td>MPNST</td>
<td>malignant peripheral nerve sheath tumor</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>NBL</td>
<td>neuroblastoma</td>
</tr>
<tr>
<td>NED</td>
<td>no evidence of disease</td>
</tr>
<tr>
<td>NHL</td>
<td>non-Hodgkin lymphoma</td>
</tr>
<tr>
<td>NPC</td>
<td>nasopharyngeal carcinoma</td>
</tr>
<tr>
<td>NRSTS</td>
<td>nonrhabdomyosarcomatous soft tissue sarcomas</td>
</tr>
<tr>
<td>OS</td>
<td>osteosarcoma</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PMBCL</td>
<td>primary mediastinal B-cell lymphoma</td>
</tr>
<tr>
<td>PNET</td>
<td>primitive neuroectodermal tumor</td>
</tr>
<tr>
<td>RCC</td>
<td>renal cell carcinoma</td>
</tr>
<tr>
<td>RMS</td>
<td>rhabdomyosarcoma</td>
</tr>
<tr>
<td>US</td>
<td>ultrasound</td>
</tr>
<tr>
<td>VMA</td>
<td>vanillylmandelic acid</td>
</tr>
<tr>
<td>WBC</td>
<td>white blood cell count</td>
</tr>
<tr>
<td>XRT</td>
<td>radiation therapy</td>
</tr>
</tbody>
</table>
General Considerations for Pediatric Oncology

The majority of malignancies occurring in the pediatric population are different diagnoses than those occurring in the adult population. For those diseases which occur in both pediatric and adult populations, minor differences may exist in management between pediatric and adult medical oncologists due to patient age, comorbidities, and differences in disease natural history between children and adults.

In general, a recent (within 60 days) detailed history and physical examination and appropriate laboratory studies should be performed prior to considering advanced imaging, unless the patient is undergoing guideline-supported scheduled off therapy surveillance evaluation.

✓ Because of the relatively small number of childhood cancer treatment centers, it is common to combine off-therapy visits with imaging and other subspecialist visits to accommodate families traveling long distances for their child’s care.

The majority of imaging decisions are specific to the type of cancer, but for rare malignancies not specifically addressed in the guidelines, the following general principles apply:

✓ Body areas that should be imaged are specific to the type of cancer being treated.
 Routine imaging of brain, spine, neck, chest, abdomen, pelvis, bones, or other body areas may not be indicated for certain cancer types in the absence of localizing symptoms or abnormalities on plain radiography or ultrasound. Refer to disease-specific guideline sections for details.

✓ CT with contrast is the imaging study of choice for lymphomas and solid tumors of the neck, thorax, abdomen, and pelvis.
 o If CT contrast is contraindicated due to allergy or impaired renal function, either CT without contrast or MRI without and with contrast may be substituted at the discretion of the ordering physician.

✓ MRI without and with contrast is the study of for CNS and musculoskeletal tumors.

✓ CXR can provide a prompt means to evaluate primary intrathoracic tumors and continues to be the initial imaging study recommended to detect complications, such as suspected infection, in symptomatic patients undergoing treatment. Plain radiographs of the abdomen have largely been replaced by ultrasound, CT, or MRI.

✓ Ultrasound is not widely used in pediatric oncology for staging, but is frequently used for surveillance in patients who have successfully treated (primarily abdominal or pelvic) tumors with little or no residual disease.

The overwhelming majority of pediatric oncology patients treated in the United States will be enrolled on or treated according to recent Children’s Oncology Group (COG)
protocols. These imaging guidelines are consistent with evaluations recommended by COG protocols commonly used for direct patient care (whether formally enrolled on study or not) as of August 7, 2014.

✓ Imaging recommended by COG protocols should generally be approved unless the imaging is being performed solely to address a study objective and would not be indicated in usual clinical care

Imaging for pediatric cancers is divided into the following phases:

✓ **Screening**: All imaging studies requested for patients at increased risk for a particular cancer in the absence of any clinical signs or symptoms. Screening using advanced imaging is only supported for conditions listed in: **PACONC-2~Screening Imaging in Cancer Predisposition Syndromes**.

✓ **Initial Staging**: All imaging studies requested from the time cancer is first clinically suspected until the initiation of specific treatment (which may be surgical resection alone)

 o Pediatric malignancies in general behave more aggressively than adult cancers, and the time from initial suspicion of cancer to specific therapy initiation can be measured in hours to days for most pediatric cancers, compared with weeks to months in most adult cancers.
 - Therefore, it is recommended that children with pediatric solid tumors undergo CT evaluation of the chest prior to general anesthesia for biopsy or resection due to the risk of post-operative atelectasis mimicking pulmonary metastasis resulting in inaccurate staging and/or delay in therapy initiation.
 - If CTs of other body areas are indicated, (neck, abdomen, pelvis), they should be performed concurrently with chest CT to avoid overlapping fields and the resulting increase in radiation exposure.
 - Metastatic CNS imaging and metabolic imaging (nuclear bone scan, PET, MIBG) are generally deferred until after a histologic diagnosis is made, with the exception of aggressive non-Hodgkin lymphomas

✓ **Treatment Response**: All imaging studies completed during any type of active treatment (chemotherapy or other medications, radiation therapy, surgery), including evaluation at the end of planned active treatment

 o Unless otherwise stated in the disease-specific guidelines, imaging for treatment response can be approved after every 2 cycles, which is usually ~6 weeks of therapy for solid tumors and usually ~8-12 weeks for CNS tumors

✓ **Surveillance**: All routine imaging studies requested for a patient who is not receiving any active treatment, even if residual imaging abnormalities are present.

 o Unlike adult cancers, in most pediatric cancers surveillance does not begin until all planned multimodal therapy is completed. Pediatric cancers where surgical resection is considered curative are listed under their disease-specific guidelines.
The recommended timing for surveillance imaging studies in these guidelines refers to patients who are asymptomatic or have stable chronic symptoms.

Certain tumor types do not require surveillance with advanced imaging as patient outcomes following relapse are not improved by surveillance imaging. Refer to disease-specific guideline sections for details.

PET imaging is not supported for surveillance imaging unless specifically stated in elsewhere in the guidelines (MIBG-negative neuroblastoma, for example).

 Patients with new or changing clinical signs or symptoms suggesting recurrent disease should have symptom-appropriate imaging requests approved even when surveillance timing recommendations are not met.

Recurrence: All imaging studies completed at the time a recurrence or progression of a known cancer is documented or is strongly suspected based on clinical signs or symptoms, laboratory findings, or results of basic imaging studies such as plain radiography or ultrasound.

Following documented recurrence of childhood cancer, any studies recommended for initial staging of that cancer type in its disease-specific imaging guidelines should be approved.

During active treatment for recurrent pediatric cancer, conventional imaging evaluation (CT or MRI - should use the same modality for ongoing monitoring as much as possible) of previously involved areas should be approved according to the disease-specific Treatment Response imaging guidelines:

- Imaging may be indicated more frequently than recommended by guidelines with clinical documentation that the imaging results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance.

PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.

If a patient with recurrent pediatric cancer completes active treatment with no evidence of disease (NED), s/he should be imaged according to the disease-specific surveillance guidelines.

Diagnostic Radiation Exposure in Pediatric Oncology

Young children are at increased risk for malignancy from diagnostic radiation exposure, most commonly from CT and nuclear medicine imaging. They are more sensitive to radiation than adults and generally live longer after receiving radiation doses from medical procedures, resulting in a larger number of years during which to manifest a cancer. Because of this increased risk in young children, requests to
substitute MRI without and with contrast for CT with contrast to avoid radiation exposure can be approved if all of the following criteria apply:

- The patient is presently a young child and the ordering physician has documented the reason for MRI, rather than CT, is to avoid radiation exposure.
- The disease-specific guidelines do not list CT as superior to MRI for the current disease and time point, meaning the MRI will provide equivalent or superior information relative to CT.
- The request is for a body area other than chest as MRI is substantially inferior to CT for detection of small pulmonary metastases.

Radiation Treatment Planning in Pediatric Oncology

- Imaging performed in support of radiation therapy treatment planning should follow guidelines outlined in [ONC-1.3 General Guidelines – Coding and Payor Notes](#).

Cardiac Function Assessment in Pediatric Oncology during Active Treatment:

- Echocardiography (CPT®93306) is preferred for evaluation of cardiac function prior to cardiotoxic chemotherapy and can be performed as often as each chemotherapy cycle at the discretion of the treating pediatric oncologist based on:
 - Cumulative cardiotoxic therapy received to date
 - Patient’s age and gender
 - Most recent echocardiogram results

- **MU**lti-Gated Acquisition (MUGA, CPT®78472) blood pool nuclear medicine scanning should not be approved for cardiac function monitoring in pediatric oncology patients unless one of the following applies:
 - Echocardiography yielded a borderline shortening fraction (<30%) and additional left ventricular function data are necessary to make a chemotherapy decision
 - Echocardiography windowing is suboptimal due to body habitus or tumor location

Hematopoietic Stem Cell Transplant (HSCT) in Pediatric Oncology:

- Transplantation of hematopoietic stem cells from bone marrow, peripheral blood, or cord blood is commonly used in the following clinical situations in pediatric hematology and oncology patients:
 - High risk or recurrent leukemia (allogeneic)
 - Recurrent lymphoma (allogeneic or autologous)
 - Hemophagocytic lymphohistiocytosis (allogeneic)
 - High risk sickle cell disease (allogeneic)
 - High risk neuroblastoma (autologous)
 - High risk CNS tumors (autologous)
 - Recurrent Ewing sarcoma family of tumors (autologous, rarely allogeneic)

- Imaging considerations for HSCT should follow guidelines in: [ONC-28 Hematopoietic Stem Cell Transplantation](#).
PET Imaging in Pediatric Oncology:

NOTE: Some payors have specific restrictions on PET imaging, and those coverage policies may supersede the recommendations for PET imaging in these guidelines.

In these guidelines, the term “PET” refers specifically to $^{18}\text{F}-\text{FDG}$-PET imaging and also applies to PET/CT fusion studies.

- PET in pediatric oncology should use PET/CT fusion imaging (CPT®78815 or CPT®78816) unless the treating facility does not have fusion capacity, in which case PET alone (CPT®78812 or CPT®78813) can be approved along with the appropriate CT studies. Unbundling PET/CT imaging into separate PET and diagnostic CT codes is otherwise not supported.

- The decision whether to use skull base to mid-femur (“eyes to thighs”) procedure code for PET (CPT®78812 or CPT®78815) rather than whole body PET (CPT®78813 or CPT®78816) is disease-specific and is addressed in the following guideline sections.

- As in adults, PET imaging is not reliable for the detection of anatomic lesions smaller than 8 mm in size.

- PET using isotopes other than $^{18}\text{F}-\text{FDG}$ is considered investigational in pediatric oncology at this time.

- PET has not been shown to be diagnostically useful in all forms of childhood cancer. PET is supported for pediatric malignancies with significant published evidence regarding its diagnostic accuracy and importance in accurately directing patient care decisions. See disease-specific guideline sections for details.

PET for rare malignancies not specifically addressed by MSI Guidelines is generally not indicated, due to lack of available evidence regarding diagnostic accuracy of PET in the majority of rare cancers. Conventional imaging studies should be used for initial staging and treatment response for these diagnoses. PET can be approved if *all* of the following apply:

- Conventional imaging (CT, MRI, US, plain film) reveals findings that are equivocal or suspicious
- No other specific metabolic imaging (MIBG, octreotide, technetium, etc.) is appropriate for the disease type
- The submitted clinical information describes a specific decision regarding the patient’s care that will be made based on the PET results
- These requests will be forwarded for Medical Director review

- PET is not indicated for asymptomatic surveillance in any pediatric malignancy other than neuroblastoma that was never MIBG-avid.

- Once PET has been documented to be negative for a given patient’s cancer, or all PET-avid disease has been surgically resected, PET should not be used for continued disease monitoring or surveillance unless one of the following applies:
Conventional imaging (CT, MRI, US, plain film) reveals findings that are inconclusive or suspicious for recurrence

- Residual mass that has not changed in size since the last conventional imaging does **not** justify PET imaging
- PET avidity in a residual mass at the end of planned therapy is **not** an indication for PET imaging during surveillance.

Very rare circumstances where tumor markers or obvious clinical symptoms show strong evidence suggesting recurrence and PET would replace conventional imaging modalities

- The patient is undergoing salvage treatment for a recurrent solid tumor with residual measurable disease on conventional imaging and confirmed repeat negative PET imaging will allow the patient to transition from active treatment to surveillance.

These requests will be forwarded for Medical Director review.

The guidelines listed in this section for certain specific indications are not intended to be all-inclusive; clinical judgment remains paramount and variance from these guidelines may be appropriate and warranted for specific clinical situations.

References

<table>
<thead>
<tr>
<th>PACONC-2</th>
<th>Screening Imaging in Cancer Predisposition Syndromes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>General Remarks</td>
</tr>
<tr>
<td>2.2</td>
<td>Li-Fraumeni Syndrome (LFS)</td>
</tr>
<tr>
<td>2.3</td>
<td>Neurofibromatosis 1 and 2 (NF1 and NF2)</td>
</tr>
<tr>
<td>2.4</td>
<td>Beckwith-Wiedemann Syndrome (BWS)</td>
</tr>
<tr>
<td>2.5</td>
<td>Denys-Drash Syndrome (DDS)</td>
</tr>
<tr>
<td>2.6</td>
<td>Wilms Tumor-Aniridia-Growth Retardation (WAGR)</td>
</tr>
<tr>
<td>2.7</td>
<td>Familial Adenomatous Polyposis (FAP) and Related Conditions</td>
</tr>
<tr>
<td>2.8</td>
<td>Multiple Endocrine Neoplasias (MEN)</td>
</tr>
<tr>
<td>2.9</td>
<td>Tuberous Sclerosis Complex (TSC)</td>
</tr>
<tr>
<td>2.10</td>
<td>Von Hippel-Lindau Syndrome (VHL)</td>
</tr>
<tr>
<td>2.11</td>
<td>Rhabdoid Tumor Predisposition Syndrome</td>
</tr>
<tr>
<td>2.12</td>
<td>Familial Retinoblastoma Syndrome</td>
</tr>
<tr>
<td>2.13</td>
<td>Hereditary Paraganglioma-Pheochromocytoma Syndromes</td>
</tr>
</tbody>
</table>
PACONC-2.1 General Remarks

This section is intended to give guidance for screening imaging prior to diagnosis with a specific malignancy. Once a patient with a cancer predisposition syndrome has been diagnosed with a malignant disease, future imaging decisions should be guided by the appropriate disease-specific guidelines except as explicitly stated elsewhere in this section.

This section’s guidelines are limited to cancer predisposition syndromes with screening imaging considerations. Syndromes requiring only clinical or laboratory screening are not discussed here.

Many of these cancer predisposition syndromes also affect adults as survival continues to improve for these patients. Adults with syndromes covered in this section may follow these imaging guidelines except where contradicted by specific statements in the adult Imaging Guidelines or payor-specific coverage policies.

Documentation of genetic or molecular confirmation of the appropriate syndrome with increased cancer risk is preferred for any patient to qualify for screening imaging. There are a number of complex ethical, social, and financial issues involved in the decision to complete genetic testing in a pediatric patient:

- **NOTE: Some payors consider certain genetic tests to be experimental, and those coverage policies supersede the recommendations for genetic testing in this section.**
- From the 2013 AAP Policy Statement, “Predictive genetic testing for adult-onset conditions generally should be deferred unless an intervention initiated in childhood may reduce morbidity or mortality.” Imaging surveillance is one such intervention and should not be performed without justifiable cause.
- Genetic testing should be performed in conjunction with genetic counseling for appropriate communication of risks identified by testing.
- When genetic testing is not possible or not supported by health plan coverage policies, formal diagnosis after evaluation by a physician with significant training and/or experience in cancer predisposition syndromes (most commonly a geneticist or oncologist) is generally sufficient to confirm eligibility for screening imaging.
PACONC-2.2 Li-Fraumeni Syndrome (LFS)

Syndrome inherited in an autosomal dominant manner (50% risk to offspring) associated with germline mutations in TP53 resulted in an increased susceptibility to a variety of cancers.

✓ Eighty percent of individuals will have germline TP53 mutation:
 ○ Tumor-specific TP53 mutations are much more common than germline TP53 mutations and are not associated with an increased risk for subsequent cancers
 ○ If TP53-negative, formal diagnosis of LFS should be assigned by a physician with significant training and/or experience in LFS (most commonly a geneticist or oncologist) based on specified clinical criteria prior to beginning a screening imaging program
 ○ TP53 mutations may be present in 50-80% of pediatric adrenocortical carcinoma, 10% of pediatric rhabdomyosarcoma, and 10% of pediatric osteogenic sarcoma patients

✓ Because of the wide variety of possible malignancies, there is not to date a standard approach for screening that is supported by evidence:

✓ Patients with LFS have an increased sensitivity to ionizing radiation, so screening strategies resulting in significant radiation exposure are not appropriate (CT and nuclear medicine).

The following imaging studies should be considered appropriate in patients with LFS:

Annual complete detailed physical examinations, complete blood counts, and urinalyses form the backbone of LFS cancer screening.

✓ Abdominal ultrasound (CPT®76700) every 3-6 months to evaluate for adrenocortical carcinomas which have improved prognosis with early detection

✓ Annual Breast MRI (CPT®77059) alternating every 6 months with breast ultrasound for breast cancer surveillance is appropriate for LFS patients beginning at age 20-25 (see CH-25.5~Breast MRI Indications)

✓ Targeted MRI imaging without and with contrast of any body area with documented signs or symptoms suggestive of possible malignancy unless a specific cause is identifiable
 ○ When a specific malignancy is suspected, the patient should be imaged according to the MSI guideline specific to the suspected cancer type

✓ Studies ordered as part of a screening imaging program based on specific family cancer history that has been developed for an individual patient in conjunction with a multidisciplinary team including at least genetics and oncology
 ○ Specifics of the program should be obtained and available for the medical director reviewing the case
 ○ Even in this setting, whole body MRI is not supported for LFS (see next bullet)
Whole body MRI (WBMRI) screening has not been shown to improve LFS patient outcomes to date.

✓ The primary reference cited by providers to support requests for WBMRI in LFS is Villani et al, Lancet Oncol 2011. This article does not provide sufficient scientific rationale to justify WBMRI use in Li-Fraumeni patients.

 o One major confounder in the outcome measures is that the surveillance-detected tumors are almost all low grade malignancies. The authors make a poorly supported assumption that surveillance improves survival outcomes, but the tumors in the no surveillance group were all very high grade malignancies, and half of the tumors in the surveillance group were benign or very low grade, so their conclusions about outcome are skewed to the point of invalidity.

 • In the 18 surveillance patients there were 10 tumors detected (1 malignant fibrous histiocytoma, 2 choroid plexus carcinomas, 2 adrenocortical carcinomas, 3 low grade brain gliomas, 1 thyroid adenoma and 1 myelodysplastic syndrome. In the no-surveillance group, 10 tumors were detected (1 rhabdomyosarcoma, 1 osteosarcoma, 2 choroid plexus carcinomas, 2 medulloblastomas, 1 high grade brain glioma, 1 neuroblastoma, 1 acute myeloid leukemia, 1 malignant meningioma, 1 lung carcinoma, and 1 breast carcinoma).

 • The high grade malignancies occurring in both groups are choroid plexus carcinoma and adrenocortical carcinoma. Abdominal ultrasound is currently recommended by MSI guidelines, and MRI Brain can be approved for LFS patients with a family history of choroid plexus carcinoma. Breast MRI for adult LFS patients is also currently recommended by MSI guidelines.

 o Most relevant to this topic, only ONE tumor was detected by whole body MRI, and that was a malignant fibrous histiocytoma in a 39 year old, which was also noticeable on clinical exam at the time of the whole body MRI. No other tumor of any kind was detected by whole body MRI out of ~100 studies overall (18 patients annually for 6 years). So, in this trial there was not a single tumor detected by whole body MRI alone.
PACONC-2.3 Neurofibromatosis 1 and 2 (NF1 and NF2)

NF1

Common syndrome inherited in an autosomal dominant manner (50% risk to offspring) affecting 1 in 2500 people. The diagnosis is commonly made based on established clinical criteria including café-au-lait spots, Lisch nodules of the iris, axillary freckling, family history, and the presence of NF-associated tumors.

Genetic testing is encouraged for children with possible NF1 and no family history prior to assigning a diagnosis, but will not identify a mutation for all patients with NF1. The majority of tumors are benign in nature, but malignant degeneration can occur.

NF1-affected persons have increased sensitivity to ionizing radiation, so CT and nuclear medicine imaging are not appropriate screening or surveillance studies for these patients. CT and/or nuclear medicine studies may be indicated for acute clinical situations and should be judged on a case-by-case basis. These requests will be forwarded for Medical Director review.

Annual ophthalmology evaluation is recommended beginning at the time of diagnosis of NF1 to evaluate for optic pathway abnormalities:

- Screening MRIs of the Brain (CPT®70553) and Orbits (CPT®70543) for asymptomatic individuals are not generally recommended due to the ~60% rate of unidentified bright objects (UBOs, T2-weighted signal abnormalities) which mostly disappear by age 30
 - A one-time MRI Brain (CPT®70553) and Orbits (CPT®70543) without and with contrast can be approved to clarify the diagnosis of NF1 if evaluation by a physician with significant training and/or experience in neurofibromatosis is inconclusive (most commonly a neurologist, geneticist, ophthalmologist, or oncologist)
 - Routine follow up imaging of UBOs is not warranted in the absence of acute symptoms suggesting new or worsening intracranial disease
- Patients with NF1 and documented optic pathway gliomas should be imaged according to PACONC-4.2~Intracranial Low Grade Gliomas.

NF1 patients are at increased risk for plexiform neurofibromas (PN) and malignant peripheral nerve sheath tumors (MPNST—a high grade sarcoma).

- Screening imaging of asymptomatic patients for these tumors is not supported by evidence. Early consideration to MRI imaging without and with contrast is appropriate for any clinical symptoms suggestive of a solid tumor in a patient with NF1.
- The evidence published on the utility of PET imaging to detect transformation from PN to MPNST is limited and contradictory, and PET is not supported for PN surveillance in asymptomatic patients at this time.
- Patients with soft tissue masses should be imaged according to ONC-12~Sarcoma or PACONC-8.3 Non-Rhabdomyosarcoma Soft Tissue Sarcomas, depending on the patient’s age at the time the mass is discovered.
Patients with bone masses should be imaged according to PACONC-9 Bone Tumors.

NF2

NF2 is substantially less common than NF1. It is inherited in an autosomal dominant manner (50% risk to offspring) affecting ~1 in 25000 people. NF2 is associated with increased risk for meningiomas (50% of affected individuals), vestibular schwannomas, and spinal tumors (75% of affected individuals).

Recommended cancer screening imaging includes:

- Annual MRI Brain without and with contrast (CPT®70553) beginning at age 10 years
- MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved every 3 years beginning at age 10 years

Additional appropriate imaging requests include:

- MRI Brain without and with contrast (CPT®70553) should be approved for any patient with NF2 and clinical symptoms of intracranial mass or vestibular disease
- MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) should be approved for any patient with NF2 and:
 - Clinical symptoms suggestive of spinal or paraspinal tumors, including uncomplicated back pain or radiculopathy
 - Recent diagnosis with a meningioma or vestibular schwannoma

PACONC-2.4 Beckwith-Wiedemann Syndrome (BWS)

Inherited syndrome characterized by macroglossia, hemihypertrophy, macrosomia, organomegaly, and neonatal hypoglycemia. Patients with isolated hemihypertrophy are also imaged according to this guideline.

Caused by mutation at chromosome 11p15, affected children are predisposed to Wilms tumor, hepatoblastoma, and adrenocortical carcinoma.

Recommended cancer screening imaging includes:

- Abdominal US (CPT®76700) every 3 months from birth to 8th birthday
- Serum AFP every 3 months to 5th birthday
PACONC-2.5 Denys-Drash Syndrome (DDS)
Characterized by pseudohermaphroditism, early renal failure, and >90% risk of Wilms tumor development in each kidney. Associated with mutations at 11p13, risk of renal failure after detection of symptomatic Wilms tumor is 62%, so early detection may allow for renal-sparing surgical approaches.

Recommended cancer screening imaging includes:
- Abdominal ultrasound (CPT®76700) every 3 months from birth to 8th birthday

PACONC-2.6 Wilms Tumor-Aniridia-Growth Retardation (WAGR)
Named for the components of the disorder, it is associated with mutations at 11p13. As the name suggests, patients are predisposed to Wilms tumor, with 57% of patients in one cohort developing Wilms tumor. Risk of renal failure after detection of symptomatic Wilms tumor is 38%, so early detection may allow for renal-sparing surgical approaches.

Recommended cancer screening imaging includes:
- Abdominal US (CPT®76700) every 3 months from birth to 8th birthday

PACONC-2.7 Familial Adenomatous Polyposis (FAP) and Related Conditions
Inherited in an autosomal dominant manner (50% risk to offspring), it is also known as Adenomatous Polyposis Coli (APC). It is associated with the development of thousands of colonic polyps by age 20 and >90% risk of colorectal carcinoma. Prophylactic total colectomy is recommended by age 20 for most patients. FAP is also associated with hepatoblastoma.

Patients with Lynch, Gardner, and Turcot syndromes should also be imaged according to these guidelines.

Recommended cancer screening imaging includes:
- Abdominal US (CPT®76700) every 3 months from birth to 6th birthday
 - Annual Abdominal US for life after age 6 with family history of desmoid tumors
- Serum AFP every 3 months to 6th birthday
- Annual colonoscopy beginning at age 7
- Annual esophagogastroduodenoscopy beginning at age 10
- Annual thyroid ultrasound (CPT®76536) beginning at age 12
- Annual pelvic ultrasound (CPT®76856) beginning at age 30
PACONC-2.8 Multiple Endocrine Neoplasias (MEN)
Inherited in an autosomal dominant manner (50% risk to offspring)

MEN1 is characterized by parathyroid, pancreatic islet cell, and pituitary gland tumors (3 P’s), as well as carcinoid tumors in the chest and abdomen, and 28% of patients will develop at least one tumor by age 15.

MEN2a is characterized by medullary thyroid carcinoma, parathyroid adenomas, and pheochromocytomas.

MEN2b is characterized by ganglioneuromas of the GI tract and skeletal abnormalities presenting in infancy.

Recommended cancer screening imaging includes:

- MEN1
 - Annual MRI Brain without and with contrast (CPT® 70553) can be approved beginning at age 5
 - Annual MRI Abdomen without and with contrast (CPT® 74183) can be approved beginning at age 5
 - Annual MRI Chest without and with contrast (CPT® 71552) can be approved beginning at age 5

- MEN2a and MEN2b
 - Annual measurement of catecholamines for pheochromocytoma screening
 - MRI Abdomen without and with contrast (CPT® 74183) can be approved every 3 years beginning at age 5
PACONC-2.9 Tuberous Sclerosis Complex (TSC)
Inherited in an autosomal dominant manner (50% risk to offspring), affecting ~1 in 6000 individuals, it is associated with benign tumors, hypopigmented skin macules (ash leaf spots), pulmonary lymphangioleiomyomatosis, developmental delay, and epilepsy.

Malignancies associated with this syndrome include:

✓ Subependymal giant cell astrocytomas (SEGA tumors)
 o Historically, early surgery was important to reduce morbidity related to these tumors
 o More recently, everolimus has been successfully used to treat these tumors without surgery, and early detection remains an important feature for success
✓ Renal cell carcinoma
✓ Cardiac rhabdomyosarcoma

Recommended cancer screening imaging includes:

✓ Annual ophthalmologic evaluation
✓ Annual Brain MRI without and with contrast (CPT®70553) beginning at age 3
 o Patients with TSC and documented SEGA tumors should be imaged according to PACONC-4.2~Intracranial Low Grade Gliomas.
✓ Annual Renal US (CPT®76770) beginning at age 3
 o Annual MRI Abdomen without and with contrast (CPT®74183) can be substituted for Renal US in patients with documented renal lesions
✓ Annual Echocardiography beginning at age 4
✓ One time CT Chest without contrast (CPT®71250) after age 18 years
 o Additional CTs may be approved every 1-3 years for patients with documented abnormalities
 o CT Chest without contrast should be approved for evaluation of any new pulmonary symptoms or worsening pulmonary function testing
PACONC-2.10 Von Hippel-Lindau Syndrome (VHL)
Inherited in an autosomal dominant manner (50% risk to offspring), it is associated with CNS hemangioblastomas, retinal angiomas, endolymphatic sac tumors, renal cell carcinoma, and pheochromocytomas and other neuroendocrine tumors.

Recommended cancer screening imaging includes:
- Annual ophthalmologic evaluation
- Annual measurement of catecholamines beginning at age 2
- Audiology assessment every 2-3 years beginning at age 5
 - If frequent ear infections are present, MRI Brain without and with contrast (CPT®70553) with attention to internal auditory canals can be approved
- MRI Brain without and with contrast (CPT®70553) every 2 years beginning at age 12
- MRI Spine without and with contrast (Cervical-CPT®72156), Thoracic-CPT®72157, and Lumbar-CPT®72158) every 2 years beginning at age 16
- Annual Abdominal US (CPT®76700) beginning at age 5
- Annual MRI Abdomen without and with contrast (CPT®74183) beginning at age 20

PACONC-2.11 Rhabdoid Tumor Predisposition Syndrome
Inherited in an autosomal dominant manner (50% risk to offspring), it is associated with malignant rhabdoid tumors of the kidney and extrarenal locations, and atypical teratoid/rhabdoid tumors of the CNS. It is caused by a germline mutation in INI1 or SMARCB1, and is associated with a more variable prognosis than de novo rhabdoid tumors.

There is insufficient evidence to date to provide screening recommendations for advanced imaging, but targeted advanced imaging should be approved for any patient with this syndrome and any clinical symptoms to suggest malignancy.

PACONC-2.12 Familial Retinoblastoma Syndrome
This syndrome is inherited in an autosomal dominant manner (50% risk to offspring). As the name suggests, it is associated with retinoblastoma, as well as osteosarcoma, pediatric melanoma, and a significantly increased risk for radiation-related malignancies.

Regular physical and ophthalmologic evaluations under anesthesia are the hallmark of surveillance strategies for these patients, and asymptomatic screening imaging does not have a defined role at this time.

When advanced imaging is necessary, ultrasound or MRI should be used if at all possible in lieu of CT or nuclear imaging to avoid radiation exposure in these patients.
PACONC-2.13 Hereditary Paraganglioma-Pheochromocytoma Syndromes

Caused by mutations in $SDHx$ genes, this syndrome is inherited in an autosomal dominant manner (50% risk to offspring), and is associated with pheochromocytomas and paragangliomas.

Patients with Multiple Endocrine Neoplasias should not use this guideline and should be imaged according to PACONC-2.8 Multiple Endocrine Neoplasias (MEN).

Cancer screening should begin 10 years before the youngest age at diagnosis in the family history. The following recommended imaging can be approved:

- All patients with $SDHx$ mutations:
 - Annual measurement of catecholamines

- Patients with $SDHC$ or $SDHD$ mutations:
 - MRI Neck without and with contrast (CPT®70543) every 2 years
 - MIBG imaging every 4 years
 - Body MRI without and with contrast or CT with contrast can be approved to evaluate abnormal MIBG findings
 - No documented role for PET/CT imaging in screening for these patients

- Patients with $SDHB$ mutations:
 - CT Chest/Abdomen/Pelvis with contrast (CPT®71260 and CPT®74177) OR MRI Chest/Abdomen/Pelvis without and with contrast (CPT®71552, CPT®74183 and CPT®72197) every 2 years
 - MIBG imaging every 4 years
 - No documented role for PET/CT imaging in screening for these patients
 - Annual Abdominal US (CPT®76700)

- Patients with $SDHA$ or $SDH5$ mutations:
 - No specific imaging screening has been shown to improve patient outcomes to date

References – Cancer Predisposition Syndromes

27. Stoffel EM, Mangu PB, Gruber SB et al, Hereditary Colorectal Cancer Syndromes: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the Familial Risk-

PACONC-3.1 General Remarks
The overwhelming majority of leukemias occurring in children are acute. Chronic myelogenous leukemia (CML) is rare in children, and the occurrence of chronic lymphocytic leukemia (CLL) in pediatric patients has only been reported once to date.

- MRI Brain without and with contrast (CPT® 70553) can be performed in patients exhibiting CNS symptoms and in patients found to have high tumor burden on CSF cytology.
- In general, any CT or MRI studies requested for pre-transplant or immediate post-transplant (~first 100 days) evaluation should be approved.
- There is not sufficient evidence to support the use of PET imaging in the management of pediatric leukemias or lymphoblastic lymphomas.

PACONC-3.2 Acute Lymphoblastic Leukemia (ALL)
This section does not apply to patients with mature B-cell histology (primarily Burkitt’s in children). Please refer to PACONC-5.3 Pediatric Non-Hodgkin Lymphoma for guidelines for these patients.

Patients with B-precursor or T-cell lymphoblastic lymphoma without bone marrow involvement are treated similarly to leukemia patients of the same cell type and should be imaged according to this guideline section.

The majority of ALL patients have B-precursor ALL and routine advanced imaging is not necessary.

- CXR should be performed to evaluate for mediastinal mass in suspected cases or upon initial diagnosis.
 - If mediastinal widening is seen on CXR, CT Chest with contrast (CPT® 71260) is indicated immediately to evaluate for airway compression and anesthesia safety prior to attempting histologic diagnosis.
 - Patients with known or strongly suspected T-cell histology can have CT Chest (CPT® 71260) and CT Abdomen/Pelvis (CPT® 74177) with contrast approved for initial staging purposes

- Additional CT to assess response to therapy are indicated only for patients with known bulky nodal disease (usually with T-cell histology) at the end of induction (~4-6 weeks). Patients with residual masses can be evaluated every 6-8 weeks until disease resolution is seen.

- Once CT evaluation shows no evidence of disease, further surveillance should use CXR or Abdominal US (CPT® 76700) only, as indicated by site(s) of bulky disease present at diagnosis.
✓ Immunosuppression during ALL therapy and imaging ramifications:
 o ALL patients are severely immunocompromised during the first 4-6 weeks of treatment (Induction) and any conventional imaging request to evaluate for infectious complications during this time frame should be approved immediately.
 o Imaging requests for infectious disease concerns for ALL patients with absolute neutrophil count (ANC) <500 or inconclusive findings on chest x-ray or US at any ANC during active treatment should be approved as requested.
 o Additionally, patients may have therapy-induced hypogammaglobulinemia which requires supplemental intravenous immune globulin (IVIG) during maintenance therapy. Patients receiving supplemental IVIG should be treated similarly to patients with ANC <500 with regards to imaging for infectious disease.

✓ Relapsed ALL patients are treated with very intensive chemotherapy regimens and spend the majority of their chemotherapy treatment phase in the hospital. Due to the high risk of invasive infections, frequent CT may be indicated to evaluate known sites of invasive fungal infection, and in general these should be approved as requested.
 o Surveillance imaging of asymptomatic patients to detect invasive fungal infection has not been shown to impact patient outcomes. Imaging requests in these circumstances should only be approved when acute clinical decisions will be made based on the imaging.

✓ Osteonecrosis (ON) in ALL patients is a relatively common complication of ALL and its treatment, primary corticosteroids. Approximately 3% of younger children and 12-15% of adolescents are affected by ON at some point during therapy. The peak incidence occurs approximately one year from the time of diagnosis.
 o Surveillance imaging of asymptomatic patients to detect osteonecrosis has not been shown to impact patient outcomes, and it is not standard to alter treatment based on imaging findings alone without symptoms.
 • Follow up MRI of incidentally discovered ON findings in asymptomatic patients has not been shown to impact patient outcomes and is not necessary
 o For patients with symptoms suggesting osteonecrosis, MRI without contrast of the affected joint(s) can be approved. Contrast is not necessary in the evaluation of osteonecrosis in ALL patients.
 • If osteonecrosis is detected on initial MRI, corticosteroids are often withheld during maintenance chemotherapy (but continued in earlier phases of therapy).
 • In patients whose symptoms have resolved and are still receiving active treatment, repeat MRI without contrast of the affected joint(s) can be approved every 2 cycles of maintenance (~every 6 months) if reintroduction of corticosteroids is being considered.
 o MRI without contrast of the affected joint(s) can be approved if requested for preoperative planning in patients undergoing core decompression
 o See PACONC-19.4 Osteonecrosis in Long Term Cancer Survivors for information on osteonecrosis in ALL patients who have completed therapy.
PACONC-3.3 Acute Myeloid Leukemia (AML)

The majority of AML patients do not have any bulky disease and routine advanced imaging is not necessary.

Advanced imaging may be indicated for rare patients with bulky tumor masses (chloromas) noted on physical examination or other imaging such as plain film or ultrasound.

✓ AML patients are treated with very intensive chemotherapy regimens and spend the majority of their chemotherapy treatment phase in the hospital. Due to the high risk of invasive infections, frequent CT imaging may be indicated to evaluate known sites of invasive fungal infection, and in general these should be approved as requested.

- Surveillance imaging of asymptomatic patients to detect invasive fungal infection has not been shown to impact patient outcomes. Imaging requests in these circumstances should only be approved when acute clinical decisions will be made based on the imaging.

References

PACONC-4~PEDIATRIC CNS TUMORS

<table>
<thead>
<tr>
<th>PACONC-4</th>
<th>PEDIATRIC CNS TUMORS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>General Remarks</td>
<td>27</td>
</tr>
<tr>
<td>4.2</td>
<td>Intracranial Low Grade Gliomas (LGG)</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>High Grade Gliomas (HGG)</td>
<td>32</td>
</tr>
<tr>
<td>4.4</td>
<td>Medulloblastoma (MDB), Supratentorial Primitive Neuroectodermal Tumors (sPNET), and Pineoblastoma</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Atypical Teratoid/Rhabdoid Tumors (ATRT)</td>
<td>36</td>
</tr>
<tr>
<td>4.6</td>
<td>Pineocytomas</td>
<td>38</td>
</tr>
<tr>
<td>4.7</td>
<td>CNS Germinomas and Non-Germinomatous Germ Cell Tumors (NGGCT)</td>
<td>39</td>
</tr>
<tr>
<td>4.8</td>
<td>Ependymoma</td>
<td>41</td>
</tr>
<tr>
<td>4.9</td>
<td>Malignant Tumors of the Spinal Cord</td>
<td>43</td>
</tr>
<tr>
<td>4.10</td>
<td>Craniopharyngioma and Pituitary Tumors</td>
<td>44</td>
</tr>
<tr>
<td>4.11</td>
<td>Primary CNS Lymphoma</td>
<td>45</td>
</tr>
<tr>
<td>4.12</td>
<td>Meningiomas</td>
<td>45</td>
</tr>
<tr>
<td>4.13</td>
<td>Choroid Plexus Tumors</td>
<td>45</td>
</tr>
</tbody>
</table>
PACONC-4.1 Pediatric CNS Tumors - General Remarks
Central nervous system tumors are the second most common form of childhood cancer, accounting for ~20% of all pediatric malignancies.

Red Flag Symptoms Raising Suspicion for CNS Tumors Include:
- any headache complaint from a child age ≤5 years
- headaches awakening from sleep
- focal findings on neurologic exam
- clumsiness (common description of gait or coordination problems in young children)
- headaches associated with morning nausea/vomiting
- new onset of seizure activity with focal features
- papilledema on physical exam

✓ MRI is the preferred imaging modality for all pediatric CNS tumors. The primary imaging study for pediatric brain tumors is MRI Brain without and with contrast (CPT®70553).
 - For children able to undergo MRI without sedation, MRI Brain without contrast (CPT®70551) can be approved if requested for initial evaluation of suspected CNS tumor.
 - Younger patients requiring sedation for MRI should have their initial MRI performed without and with contrast in order to avoid a second anesthesia exposure.

✓ CT can be approved for evaluation of ventriculomegaly or other operative considerations, or for children who cannot undergo MRI safely.
 - Because of the significant percentage of pediatric CNS tumors occurring in the posterior fossa, CT is not a recommended study for evaluation of pediatric headache when brain tumor is clinically suspected. MRI should be used as first line imaging in these cases.
 - CT should not be used in place of MRI to avoid sedation in young children when red flag symptoms for CNS tumors are present
 - CT can also be approved for evaluation of headaches related to head trauma or evaluation of skull or facial bone abnormalities

✓ MRA or CTA are not routinely indicated in pediatric CNS tumors but can be approved for preoperative planning or to clarify inconclusive findings on MRI or CT.
✓ Definitive imaging should be completed prior to considering biopsy given the high degree of morbidity associated with operating on the CNS
 o Occasionally biopsy is not necessary because the imaging findings provide a definitive diagnosis. Examples include diffuse intrinsic pontine glioma and optic pathway gliomas in a patient with known neurofibromatosis.

✓ Perioperative Imaging Frequency
 o Children may undergo very frequent imaging in the immediate perioperative period around resection or debulking of a CNS tumor due to the small anatomic spaces involved. Requests for imaging during this time period to specifically evaluate postoperative course or ventriculoperitoneal shunt functioning should, in general, be approved as requested.
 o A one-time MRI Brain without and with contrast (CPT®70553) can be approved in the immediate preoperative period (even if another study has already been completed) to gain additional information which can be important in optimizing patient outcomes, such as:
 • Completion of additional specialized MRI sequences such as diffusion-tensor imaging, perfusion imaging, tractography, or other sequences not reported under a separate CPT® code but not part of a routine MRI Brain series

MR Spectroscopy (MRS) CPT®76390

NOTE: Some payors have specific restrictions on MR Spectroscopy, and those coverage policies may supersede the recommendations for MRS in these guidelines.

✓ MRS is only supported for use in tumors of glial histology (low grade gliomas and high grade gliomas) and is considered investigational/experimental for all other histologies

✓ MRS is not indicated for most pediatric CNS Tumors, but can be approved in the following circumstances:
 o to distinguish low grade from high grade gliomas
 o to evaluate a brain lesion of indeterminate nature when the MRS findings will be used to determine whether biopsy/resection can be safely postponed
 o to distinguish radiation-induced tumor necrosis from progressive disease within 18 months of completing radiotherapy.
PACONC-4.2 Intracranial Low Grade Gliomas (LGG)
Account for 40-60% of pediatric CNS tumors. These tumors are defined as having a
WHO histologic grade of I or II (out of IV), can occur anywhere in the CNS, and
includes the following tumors:

- Pilocytic Astrocytoma
- Fibrillary (or Diffuse) Astrocytoma
- Optic Pathway Gliomas
- Pilomyxoid Astrocytoma
- Oligodendroglioma
- Oligoastrocytoma
- Oligodendrocytoma
- Subependymal Giant Cell Astrocytoma (SEGA)
- Ganglioglioma
- Gangliocytoma
- Dysembryoplastic infantile astrocytoma (DIA)
- Dysembryoplastic infantile ganglioglioma (DIG)
- Dysembryoplastic neuroepithelial tumor (DNT)
- Tectal plate gliomas
- Cervicomedullary gliomas
- Pleomorphic xanthoastrocytoma (PXA)
- Any other glial tumor with a WHO grade of I or II

✓ PET does not have a defined role in the evaluation of LGG due to the poor FDG-
avidity of these tumors (particularly grade I tumors) compared to normal cortex.

✓ MR Spectroscopy (MRS, CPT® 76390) can be approved in the following
circumstances:
- to distinguish low grade from high grade gliomas
- to evaluate a brain lesion of indeterminate nature when the MRS findings will
 be used to determine whether biopsy/resection can be safely postponed
- to distinguish radiation-induced tumor necrosis from progressive disease within
 18 months of completing radiotherapy.

NOTE: Some payors have specific restrictions on MR Spectroscopy, and those coverage
policies may supersede the recommendations for MRS in these guidelines

Initial Staging
✓ MRI Brain without and with contrast (CPT® 70553) is indicated for all LGG
✓ MRI Spine without and with contrast (cervical-CPT® 72156, thoracic-CPT® 72157,
lumbar-CPT® 72158) can be approved for all LGG patients if requested, and spinal
imaging is particularly recommended for patients with:
- Multicentric tumors
- Intracranial leptomeningeal disease
Clinical signs or symptoms suggesting spinal cord involvement
MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain.

✓ Patients with neurofibromatosis and small optic pathway tumors may not undergo biopsy or resection and will proceed directly to treatment or surveillance.

Treatment Response

✓ Children who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines

✓ Children with neurofibromatosis and small optic pathway gliomas may be observed without specific treatment and should be imaged according to surveillance guidelines for LGG.

✓ Patients age >10 years with incompletely resected tumors usually receive adjuvant radiation therapy and can have a single MRI Brain without and with contrast (CPT®70553) approved at completion of radiotherapy and should then be imaged according to surveillance guidelines

✓ Patients age ≤10 years with incompletely resected tumors are commonly treated with chemotherapy and can have MRI Brain without and with contrast (CPT®70553) approved every 8-12 weeks during active treatment and at the end of planned chemotherapy

 o MRS (CPT®76390) should not be approved as part of routine treatment response imaging, but can be approved if a specific change in treatment will occur based solely on MRS results

NOTE: *Some payors have specific restrictions on MR Spectroscopy, and those coverage policies may supersede the recommendations for MRS in these guidelines.*

✓ Spinal imaging is not indicated during treatment response for patients without evidence of spinal cord involvement at initial diagnosis

✓ Spinal imaging is appropriate every 2-4 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI

Surveillance

✓ MRI Brain without and with contrast (CPT®70553) can be approved at 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 54, and 60 months then annually until 10 years after completion of therapy as late progressions can occur

 o Patients with documented residual masses can have annual imaging until 20 years after completion of therapy due to the risk of late transformation of these tumors
MRI Spine is not indicated during surveillance in patients without prior history of spinal involvement except to evaluate symptoms suspicious for spinal cord recurrence.

For patients with cord involvement at diagnosis, MRI Spine without and with contrast (cervical-CPT® 72156, thoracic-CPT® 72157, lumbar-CPT® 72158) can be approved at 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 54, and 60 months then annually until 10 years after completion of therapy as late progressions can occur.

- MRI Spine with contrast only can be approved (cervical-CPT® 72142, thoracic-CPT® 72147, lumbar-CPT® 72149) if being performed immediately following a contrast-enhanced MRI Brain.
PACONC-4.3 High Grade Gliomas (HGG)

Rare in children compared with the adult population, but represent 10-20% of pediatric CNS tumors. Prognosis is very poor, and survival significantly beyond 3 years from diagnosis is rare, even with complete surgical resection at initial diagnosis.

These tumors are defined as having a WHO histologic grade of III or IV (out of IV can occur anywhere in the CNS (though the majority occur in the brain), and includes the following tumors:

- Anaplastic astrocytoma
- Glioblastoma multiforme
- Diffuse intrinsic pontine glioma (DIPG, or “brainstem glioma”)
- Gliomatosis cerebri
- Gliosarcoma
- Anaplastic oligodendroglioma
- Anaplastic ganglioglioma
- Anaplastic mixed glioma
- Anaplastic mixed ganglioneuronal tumors
- Any other glial tumor with a WHO grade of III or IV

- PET does not have a defined role in the evaluation of HGG at this time despite high FDG avidity of HGG since tumors commonly include areas of necrosis and hemorrhage which confuse PET findings.

- MR Spectroscopy (MRS, CPT® 76390) can be approved in the following circumstances:
 - to distinguish low grade from high grade gliomas
 - to evaluate a brain lesion of indeterminate nature when the MRS findings will be used to determine whether biopsy/resection can be safely postponed
 - to distinguish radiation-induced tumor necrosis from progressive disease within 18 months of completing radiotherapy.

NOTE: Some payors have specific restrictions on MR Spectroscopy, and those coverage policies may supersede the recommendations for MRS in these guidelines

Initial Staging

- MRI Brain without and with contrast (CPT® 70553) is indicated for all HGG

- MRI Spine without and with contrast (cervical-CPT® 72156, thoracic-CPT® 72157, lumbar-CPT® 72158) can be approved for all HGG patients if requested, and spinal imaging is particularly recommended for patients with:
 - Multicentric tumors
 - Intracranial leptomeningeal disease
 - Clinical signs or symptoms suggesting spinal cord involvement
MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Treatment Response

✓ Patients who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines

✓ If receiving adjuvant radiotherapy after a completely resected tumor, an additional MRI Brain without and with contrast (CPT®70553) can be approved at the end of radiotherapy

✓ Patients with incompletely resected tumors are commonly treated with chemotherapy and can have MRI Brain without and with contrast (CPT®70553) approved every 8-12 weeks (2 cycles of treatment) during active treatment and at the end of planned chemotherapy

✓ Spinal imaging is not indicated during treatment response for patients without evidence of spinal cord involvement at initial diagnosis

✓ Spinal imaging is appropriate every 2-4 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI

Surveillance

✓ MRI Brain without and with contrast (CPT®70553) can be approved at 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 42, 48, 54, and 60 months then annually until 10 years after completion of therapy

 o Patients with documented residual masses can have annual imaging until 20 years after completion of therapy due to the risk of late transformation of these tumors

✓ MRI Spine is not indicated during surveillance in patients without prior history of spinal involvement except to evaluate symptoms suspicious for spinal cord recurrence

✓ For patients with cord involvement at diagnosis, MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved at 3, 6, 9, 12, 18, 21, 24, 27, 30, 33, 36, 42, 48, 54, and 60 months then annually until 10 years after completion of therapy as late progressions rarely occur

 o MRI Spine can be performed with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) if being performed immediately following a contrast-enhanced MRI Brain
PACONC-4.4 Medulloblastoma (MDB), Supratentorial Primitive Neuroectodermal Tumors (sPNET), and Pineoblastoma

Account for 15-25% of pediatric CNS tumors, prognosis is generally favorable. Leptomeningeal spread is common and can occur after initial diagnosis.

<table>
<thead>
<tr>
<th>Includes the Following Tumors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Medulloblastoma and Pineoblastoma</td>
</tr>
<tr>
<td>o sPNET</td>
</tr>
<tr>
<td>• Medulloepithelioma</td>
</tr>
<tr>
<td>• Cerebral or cerebellar neuroblastoma</td>
</tr>
<tr>
<td>• Cerebral or cerebellar ganglioneuroblastoma</td>
</tr>
<tr>
<td>• Ependymoblastoma</td>
</tr>
</tbody>
</table>

Risk Assessment is Important in Determining Optimal Treatment

High risk features include the following:

| o Spinal metastasis (including cytology positive only) |
| o Multifocal intracranial tumors |
| o Anaplastic histology |
| o All sPNET and pineoblastomas |
| o >1.5 cm² residual tumor area on postoperative MRI and age <3 years |

Patients without any high risk features are considered “Average Risk”

Initial Staging

✓ Preoperative MRI Brain without and with contrast (CPT®70553) is indicated for all patients

✓ Postoperative MRI Brain without and with contrast (CPT®70553) is required (preferably within 48 hours of surgery) to quantify residual tumor volume

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is required for all patients either preoperatively or within 28 days postoperatively

 o MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

✓ PET imaging and MR Spectroscopy do not have a defined role in the evaluation of MDB, sPNET, or pineoblastoma at this time
Treatment Response
Patients generally proceed to chemoradiotherapy within 31 days of surgical resection. All patients receive adjuvant chemotherapy lasting 6-12 months that begins~6 weeks after completion of chemoradiotherapy.

✓ MRI Brain without and with contrast (CPT®70553) and MRI Spine (with or without and with contrast) is appropriate at the start of adjuvant chemotherapy and every 3 cycles (~12-16 weeks) until therapy is completed
 - Children age <3 years are often treated with multiple cycles of high dose chemotherapy with autologous stem cell rescue in lieu of radiotherapy, and disease evaluations may occur prior to each cycle (every 4-6 weeks) if needed for response determination.

✓ End of treatment evaluation should include MRI Brain without and with contrast (CPT®70553) and MRI Spine (with or without and with contrast)

Surveillance

✓ MRI Brain without and with contrast (CPT®70553) can be approved at 3, 6, 9, 12, 16, 20, 24, 30, and 36 months then annually until 8 years after completion of therapy

✓ MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved at 3, 6, 9, 12, 16, 20, 24, 30, and 36 months then annually until 8 years after completion of therapy
 - MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

✓ Death from recurrent disease later than 8 years from the end of therapy is rare and routine advanced imaging is not warranted for these patients
PACONC-4.5 Atypical Teratoid/Rhabdoid Tumors (ATRT)

Highly aggressive tumor occurring primarily in very young children that has a clinical presentation very similar to medulloblastoma with a much higher rate of leptomeningeal spread. Metastases can occur outside the CNS, and associated tumors can also arise in the kidneys (Malignant Rhabdoid Tumor of the Kidney, MRT).

Overall prognosis is poor, with <20% of patients surviving beyond 2 years from diagnosis.

Initial Staging

✓ Preoperative MRI Brain without and with contrast (CPT®70553) is indicated for all patients
✓ Postoperative MRI Brain without and with contrast (CPT®70553) is required (preferably within 48 hours of surgery) to quantify residual tumor volume
✓ MRI Spine without and with contrast (cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is required for all patients either preoperatively or within 28 days postoperatively
 o MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
✓ Renal US (CPT®76770) is indicated to evaluate for renal masses at initial diagnosis
 o CT Abdomen/Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) can be approved if a renal lesion is detected on US.
 o If a renal lesion is also present, imaging guidelines for MRT should be followed (See: PACONC-7.6 Malignant Rhabdoid Tumor of the Kidney (MRT) and Other Extracranial Sites)
✓ PET and MR Spectroscopy do not have a defined role in the evaluation of ATRT at this time

Treatment Response

Patients generally proceed to induction chemotherapy shortly following surgical resection or biopsy.

✓ MRI Brain without and with contrast (CPT®70553) and MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) is appropriate after every 2 cycles of induction chemotherapy (~6-12 weeks)
 o MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain.
 o Children with ATRT are often treated using consolidation chemotherapy with 2-4 cycles of high dose chemotherapy with autologous stem cell rescue. Disease
evaluation is indicated following the end of the planned stem cell rescues but may occur prior to each cycle (every 4-6 weeks) if needed for response determination.

✔ Following completion of chemotherapy some patients will proceed to radiotherapy. MRI performed at the end of consolidation therapy should serve as the diagnostic MRI prior to radiotherapy.

✔ MRI Brain without and with contrast (CPT®70553) and MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) is appropriate at the end of all planned therapy
 o MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain.

Surveillance

✔ MRI Brain without and with contrast (CPT®70553) can be approved at 3, 6, 9, 12, 16, 20, 24, 30, and 36 months then annually until 8 years after completion of therapy

✔ MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved at 3, 6, 9, 12, 16, 20, 24, 30, and 36 months then annually until 8 years after completion of therapy
 o MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain.

✔ Death from recurrent disease later than 8 years from the end of therapy is rare and routine advanced imaging is not warranted for these patients.
PACONC-4.6 Pineocytomas
Low grade malignancy that is similar in presentation to LGG.

PET imaging and MR Spectroscopy do not have a defined role in the evaluation of pineocytoma.

Initial Staging
✓ MRI Brain without and with contrast (CPT®70553) is indicated for all patients
✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved for patients with:
 o Multicentric tumors
 o Atypical histology including pineoblastoma-like elements
 o Clinical signs or symptoms suggesting spinal cord involvement
 o MRI Spine with contrast only (cervical-CPT®72142, thoracic-CPT®72147, lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Treatment Response
✓ Surgical resection is curative for most patients. Patients who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines
✓ Patients with incompletely resected tumors may receive adjuvant radiation therapy and can have a single MRI Brain without and with contrast (CPT®70553) approved at completion of radiotherapy and should then be imaged according to surveillance guidelines
 o Spinal imaging is not indicated for patients without evidence of spinal cord involvement at initial diagnosis
 o Spinal imaging is appropriate every 2-4 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI

Surveillance
✓ MRI Brain without and with contrast (CPT®70553) can be approved at 3, 6, 9, 12, 16, 20, 24, 30, and 36 months then annually until 10 years after completion of therapy as late progressions can occur
✓ MRI Spine is not indicated during surveillance in patients without prior history of spinal involvement except to evaluate symptoms suspicious for spinal cord recurrence
✓ For patients with cord involvement at diagnosis, MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved at 3, 6, 9, 12, 16, 20, 24, 30, and 36 months then annually until 10 years after completion of therapy as late progressions can occur
 o MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
PACONC-4.7 CNS Germinomas and Non-Germinomatous Germ Cell Tumors (NGGCT)

More common in older school age children and younger adolescents, but can occur throughout the pediatric age range. Although leptomeningeal spread is common, prognosis is excellent due to high sensitivity to chemotherapy and radiotherapy.

Includes the Following Tumors:

- CNS Germinoma
- Non-Germinomatous Germ Cell Tumors (NGGCT)
 - Embryonal carcinoma
 - Yolk sac tumor
 - Choriocarcinoma
 - Teratoma
 - Mixed germ cell tumor

✓ PET and MR Spectroscopy do not have a defined role in the evaluation of CNS GCT.

Initial Staging

✓ MRI Brain without and with contrast (CPT®70553) is indicated for all patients

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is indicated for all patients
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Treatment Response

Patients generally proceed to chemotherapy shortly following surgical resection or biopsy and will usually receive 2-4 cycles.

✓ MRI Brain without and with contrast (CPT®70553) is appropriate after every 2 cycles of induction chemotherapy (~6-12 weeks)

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the end of induction chemotherapy for patients with localized intracranial tumors
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
 - Spinal imaging is appropriate every 2-4 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI

✓ Following completion of chemotherapy some patients will proceed to second-look surgery and/or radiotherapy
MRI of all known sites of measurable disease can be performed prior to surgery and prior to radiotherapy, if necessary

✓ MRI Brain without and with contrast (CPT®70553) and MRI Spine (with OR with/without contrast) is appropriate at the end of all planned therapy

Surveillance

✓ MRI Brain without and with contrast (CPT®70553) can be approved at 3, 6, 9, 12, 16, 20, 24, 30, and 36 months then annually until 5 years after completion of therapy

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved at 3, 6, 9, 12, 16, 20, 24, 30, and 36 months then annually until 5 years after completion of therapy

✓ MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
PACONC-4.8 Ependymoma

Occur primarily intracranially, roughly 2/3 in the posterior fossa. Overall prognosis is very good, with supratentorial tumors faring better.

Surgery is the primary treatment modality. Radiotherapy +/- chemotherapy is used for:
- Incompletely resected tumors
- Anaplastic histology
- Infratentorial location

✓ PET and MR Spectroscopy do not have a defined role in the evaluation of ependymoma.

Initial Staging

✓ MRI Brain without and with contrast (CPT®70553) is indicated for all patients

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is indicated for all patients
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Treatment Response

✓ Patients who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines

✓ Patients with incomplete resection or high risk histology receiving adjuvant radiation therapy can have a single MRI Brain without and with contrast (CPT®70553) approved at completion of radiotherapy and should then be imaged according to surveillance guidelines

✓ Patients treated with chemotherapy can have MRI Brain without and with contrast (CPT®70553) approved every 8-12 weeks during active treatment and at the end of planned chemotherapy

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the end of induction chemotherapy for patients with localized intracranial tumors
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
 - Spinal imaging is appropriate every 2-4 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI

✓ Following completion of chemotherapy some patients will proceed to second-look surgery and/or radiotherapy
MRI of all known sites of measurable disease can be performed prior to surgery and prior to radiotherapy, if necessary

✓ MRI Brain without and with contrast (CPT®70553) and MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the end of all planned therapy

✓ MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Surveillance

✓ MRI Brain without and with contrast (CPT®70553) can be approved at 4, 8, 12, 16, 20, 24, 28, 32, 36, 42, 48, 54, and 60 months after completion of therapy

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved at 12 and 24 months after completion of therapy for patients with no history of spinal cord involvement

✓ For patients with cord involvement at diagnosis, MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved at 4, 8, 12, 16, 20, 24, 28, 32, 36, 42, 48, 54, and 60 months after completion of therapy

✓ MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
PACONC-4.9 Malignant Tumors of the Spinal Cord

Treatment principles are the same as tumors of the brain, and should follow imaging guidelines according to the specific histologic type.

Multiple spinal cord tumors should raise suspicion for neurofibromatosis.

Common histologies of primary spinal cord tumor in children include:
 o LGG
 o Ependymoma
 o Any type can occur, but other histologies are rare

✓ Primary site imaging should always include MRI Spine without and with contrast of all involved levels (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158)
 o Entire spine imaging may be indicated based on the histologic type

✓ MRI Brain without and with contrast (CPT®70553) is indicated at initial diagnosis, but may be not be necessary during treatment response and surveillance
 o Given the rarity of primary spinal cord tumors in children, MRI Brain requests should, in general, be approved for surveillance after recent evaluation by a physician with significant training and/or experience in pediatric spinal cord tumors (most commonly a pediatric neurosurgeon or pediatric oncologist) as the need for intracranial surveillance is highly individualized

✓ Asymptomatic surveillance imaging should generally end at the time point appropriate for the specific tumor type
PACONC-4.10 Craniopharyngioma and Pituitary Tumors
Imaging guidelines and treatment approaches for pediatric pituitary tumors other than craniopharyngioma are consistent with those used for adults with pituitary tumors. For these tumors follow guidelines in HD-19-Pituitary

Craniopharyngiomas are less common, accounting for 6-8% of pediatric CNS tumors. Most commonly affects children in the preadolescent ages.

✓ PET imaging and MR Spectroscopy do not have a defined role in the evaluation of Craniopharyngioma.

Initial Staging
✓ MRI Brain without and with contrast (CPT®70553) is indicated for all patients
✓ CT imaging can demonstrate calcifications but is usually unnecessary if MRI is completed
✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved for patients with:
 o Multicentric tumors
 o Clinical signs or symptoms suggesting spinal cord involvement
 o MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Treatment Response
✓ Surgical resection is curative for many patients. Patients who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines.
✓ Patients with incomplete resection and receiving adjuvant radiation therapy can have a single MRI Brain (CPT®70553) approved at completion of radiotherapy and should then be imaged according to surveillance guidelines
✓ Rare patients treated with chemotherapy can have MRI Brain without and with contrast (CPT®70553) approved every 8-12 weeks during active treatment and at the end of planned chemotherapy
 o Spinal imaging is appropriate every 2-4 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI

Surveillance
✓ MRI Brain without and with contrast (CPT®70553) can be approved at 3, 6, 9, 12, 16, 20, 24, 30, and 36 months then annually until 10 years after completion of therapy as late progressions can occur
✓ MRI Spine is not indicated during surveillance in patients without prior history of spinal involvement except to evaluate symptoms suspicious for spinal cord recurrence
PACONC-4.11 Primary CNS Lymphoma

Primary CNS Lymphoma is a solitary or multifocal mass occurring in the brain without evidence of systemic (bone marrow or lymph node) involvement. Usually associated with immunodeficiency, this is a very rare entity in pediatrics accounting for <0.1% of pediatric malignancies, so age-specific guidelines have not been established.

Patients should be imaged according to [ONC-2.8 CNS Lymphoma](#).

CNS Lymphomas also involving bone marrow and/or lymph nodes should be imaged according to: [PACONC-5.3 Pediatric Non-Hodgkin Lymphomas](#).

PACONC-4.12 Meningiomas

Account for 1-3% of pediatric CNS tumors. Usually associated with neurofibromatosis type 2 (NF-2) or prior therapeutic radiation exposure to the brain. Lifetime risk may be as high as 20% for young children receiving whole brain radiotherapy, most commonly occurring 15-20 years after radiation exposure.

Meningiomas should be imaged according to [ONC-2.8 Meningiomas](#).

- MRI Brain without and with contrast (CPT®70553) is the appropriate imaging study for meningiomas

PACONC-4.13 Choroid Plexus Tumors

As a group these account for 1-4% of pediatric CNS tumors, and 70% of choroid plexus tumors present within the first 2 years of life.

Includes the following tumors:
- Choroid plexus papilloma
- Choroid plexus adenoma, or atypical choroid plexus papilloma
- Choroid plexus carcinoma

- PET imaging and MR Spectroscopy do not have a defined role in the evaluation of Craniopharyngioma.

Choroid Plexus Papilloma

Outnumber other choroid plexus tumors by 4-5X. These ventricular tumors commonly present with hydrocephalus caused by increased CSF production, resulting in signs of increased intracranial pressure. Appearance on MRI Brain with and without contrast (CPT®70553) is typical, and they are usually treated by excision.

- Regrowth is rare, but repeat MRI Brain without and with contrast (CPT®70553) is indicated if return of hydrocephalus is suspected or seen on CT imaging
Choroid Plexus Adenoma or Atypical Choroid Plexus Papilloma

These are extremely rare tumors with features midway in the malignant spectrum between papillomas and carcinomas. They are more prone to local invasion, but rarely to metastasis. Presenting symptoms are similar to papillomas. Appearance on MRI Brain with and without contrast (CPT®70553) is typical, and they are usually treated by excision.

✓ Spinal imaging may be approved if requested at initial diagnosis

✓ Regrowth is rare, but repeat MRI Brain without and with contrast is indicated if return of hydrocephalus is suspected or seen on CT imaging

Choroid Plexus Carcinoma

This is a very aggressive malignancy, with high rates of metastasis to other parts of the CNS. Prognosis is significantly less favorable than for papillomas with overall survival rates of 35-40%.

Initial Staging

✓ MRI Brain without and with contrast (CPT®70553) is indicated for all patients

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is indicated for all patients
 o MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain

Treatment Response

✓ Surgical resection is curative for many patients. Patients who have resection of the tumor can have a single MRI Brain without and with contrast (CPT®70553) approved following resection to establish baseline imaging and those with a complete resection should then be imaged according to surveillance guidelines.

✓ Patients with incomplete resection and receiving adjuvant radiation therapy can have a single MRI approved at completion of radiotherapy and should then be imaged according to surveillance guidelines

✓ Patients treated with chemotherapy can have MRI Brain without and with contrast (CPT®70553) approved every 8-12 weeks during active treatment and at the end of planned chemotherapy

✓ MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the end of induction chemotherapy for patients with localized intracranial tumors
 o MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain
Spinal imaging is appropriate every 2-4 cycles during induction chemotherapy for patients with measurable spinal cord disease on MRI.

- Following completion of chemotherapy some patients will proceed to second-look surgery and/or radiotherapy.
 - MRI of all known sites of measurable disease can be performed prior to surgery and prior to radiotherapy, if necessary.

- MRI Brain without and with contrast (CPT®70553) and MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is appropriate at the end of all planned therapy.
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain.

Surveillance

- MRI Brain without and with contrast (CPT®70553) can be approved at 4, 8, 12, 16, 20, 24, 28, 32, 36, 42, 48, 54, and 60 months after completion of therapy.

- MRI Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) can be approved at 12 and 24 months after completion of therapy for patients with no history of spinal cord involvement.

- For patients with cord involvement at diagnosis, MRI Spine without and with contrast (cervical-CPT®72156, thoracic-CPT®72157, lumbar-CPT®72158) can be approved at 4, 8, 12, 16, 20, 24, 28, 32, 36, 42, 48, 54, and 60 months after completion of therapy.
 - MRI Spine with contrast only (Cervical-CPT®72142, Thoracic-CPT®72147, Lumbar-CPT®72149) can be approved if being performed immediately following a contrast-enhanced MRI Brain.

References

<table>
<thead>
<tr>
<th>PACONC-5</th>
<th>PEDIATRIC LYMPHOMAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>General Remarks</td>
<td>50</td>
</tr>
<tr>
<td>5.2</td>
<td>Pediatric Hodgkin Lymphoma (HL)</td>
<td>50</td>
</tr>
<tr>
<td>5.3</td>
<td>Pediatric Non-Hodgkin Lymphoma (NHL)</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Aggressive Mature B-Cell NHL</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Anaplastic Large Cell Lymphoma (ALCL)</td>
<td>54</td>
</tr>
</tbody>
</table>
PACONC-5.1 General Remarks

✓ All CT imaging recommended in this section refers to CT with contrast only.
 o Noncontrast CT imaging has not been shown to be necessary in the management of pediatric lymphomas
 o Given the limited utility of noncontrast CT imaging in pediatric lymphomas, MRI without OR without and with contrast is recommended in place of CT for patients who cannot tolerate CT contrast due to allergy or impaired renal function

PACONC-5.2 Pediatric Hodgkin Lymphoma (HL)

Initial Staging

✓ All patients should undergo CT of the Neck/Chest/Abdomen/Pelvis (CPT® 70491, CPT® 71260, and CPT® 74177) as pediatric patients have a high rate of neck and Waldeyer’s ring involvement with Hodgkin lymphoma

✓ PET/CT (CPT® 78815) is indicated for initial staging of all patients, and can be performed prior to biopsy if necessary for patient scheduling.
 o Whole body PET/CT (CPT® 78816) may be approved if there is clinical suspicion of skull or distal lower extremity involvement.

✓ CT of other body areas may be indicated for rare patients based on physical findings or PET/CT results.

Treatment Response

✓ Both CT of previously involved areas and PET/CT can be approved during initial stages of treatment response as decisions about chemotherapy drug selection and radiation treatment are made based on both anatomic (CT-based) and metabolic (PET/CT-based) responses.
 o Restaging for treatment response can be performed as often as every 2 cycles of chemotherapy (~every 6 weeks).
 o For patients with low risk (stage IA or IIA) mixed cellularity Hodgkin lymphoma, PET/CT can be performed for treatment response after cycles 1 and 3 instead of cycles 2 and 4

✓ Once a particular patient has a negative PET/CT, all subsequent treatment response evaluations should use CT only, including end of therapy evaluation.
✓ Patients being treated for recurrent or refractory disease with brentuximab vedotin (Adcetris®) may have treatment response assessment performed as often as every 2 cycles of chemotherapy (~every 6 weeks).

Surveillance

Most patients experiencing recurrence are detected based on physical findings, and frequent CT surveillance imaging of Hodgkin lymphoma after completion of therapy does not improve post-recurrence overall survival.

✓ CT of the Neck/Chest/Abdomen/Pelvis (CPT®70491, CPT®71260, and CPT®74177) should be approved for any patient with clinical symptoms suggesting recurrence.

✓ CT of the Neck/Chest (CPT®70491 and CPT®71260) for patients with stage I or II disease, and CT of the Neck/Chest/Abdomen/Pelvis (CPT®70491, CPT®71260, and CPT®74177) with patients with stage III or IV disease can occur at 12 and 24 months after completing therapy.
 o Surveillance at other time points from the end of therapy should use physical exam and CXR only.

✓ CT of the Neck/Chest/Abdomen/Pelvis (CPT®70491, CPT®71260, and CPT®74177) following successful treatment for recurrent Hodgkin lymphoma can be approved at 3, 6, 9, and 12 months after completing therapy for recurrence.
 o Surveillance imaging later than 12 months after completing therapy for recurrence should follow the standard timing listed in this surveillance section.

✓ PET/CT should not be approved for surveillance, but can be approved to clarify inconclusive findings detected on conventional imaging prior to biopsy to establish recurrence. These requests require MD review.
PACONC-5.3 Pediatric Non-Hodgkin Lymphoma (NHL)

Patients with lymphoblastic lymphoma (even those with bulky nodal disease) are treated using the leukemia treatment plan appropriate to the cell type (B or T cell). These patients should be imaged using guidelines in **PACONC-3.2 Acute Lymphoblastic Leukemia**.

Indolent NHLs (primarily follicular) are rare in childhood and should be imaged using **ONC-27~Lymphomas**.

- In pediatric patients, the majority of these lymphomas fall into one of two large groups of diseases, which have very different imaging strategies
 - Aggressive Mature B-Cell NHL
 - Anaplastic Large Cell Lymphoma

Aggressive Mature B-Cell NHL

Includes Burkitt’s lymphoma/leukemia (BL), Diffuse Large B-Cell Lymphoma (DLBCL), and Primary Mediastinal Large B-Cell Lymphoma (PMBCL)

- **Post-transplant lymphoproliferative disorder (PTLD)** can rarely occur following solid organ transplantation, and may be treated similarly to high grade NHL when altering immunosuppressive regimens is unsuccessful. **PTLD is highly FDG-avid and should be imaged according to this section.**

- **Viral-associated lymphoproliferative disorders** can occur in patients with primary immunodeficiency or following hematopoietic stem cell transplant, and may be treated similarly to high grade NHL when altering immunosuppressive regimens is unsuccessful. **These lymphoproliferative disorders are highly FDG-avid and should be imaged according to this section.**

Initial Staging

- CT of the Neck/Chest/Abdomen/Pelvis (CPT®70491, CPT®71260, and CPT®74177)

- MRI Brain without and with contrast (CPT®70553) may be indicated if symptoms or extent of disease suggest intracranial extension or metastasis

- PET/CT (CPT®78815) is indicated for initial staging for all patients
 - Whole body PET/CT (CPT®78816) may be approved if there is clinical suspicion of skull or distal lower extremity involvement.
 - Due to the extremely aggressive nature of this group of tumors (the doubling time can be as short as 8 hours) it may not be possible to obtain PET/CT prior to therapy initiation. PET/CT should be approved for treatment response in these cases as these lymphomas are nearly universally FDG-avid.
Treatment Response

- Initial treatment is 7 days of low intensity therapy, with early response evaluation determining next steps in therapy using CT with contrast or MRI without and with contrast of previously involved areas performed around Day 6
 - Patients are customarily still inpatient for this evaluation so outpatient requests should be rare for this time point

- Following initial response evaluation, restaging for treatment response using CT with contrast or MRI without and with contrast (should be same modality as initial diagnosis if possible) of previously involved areas and PET/CT can be performed as often as every cycle of chemotherapy (~every 3 weeks)

- Once a particular patient has a negative PET/CT, all subsequent treatment response evaluations should use CT imaging only, including end of therapy evaluation
 - PET/CT may be indicated to assess disease activity in inconclusive residual masses seen on conventional imaging

Surveillance

Routine asymptomatic surveillance with advanced imaging has not been found to impact patient outcomes as the majority of these patients present clinically at relapse due to the highly aggressive nature of these lymphomas.

- CXR and Abdominal ultrasound (CPT®76700) are sufficient to follow asymptomatic patients with residual masses in the chest or abdomen/pelvis. Surveillance imaging with CT or MRI has not been shown to improve patient outcomes following recurrence and is not the standard of care.

- CT of the Neck/Chest/Abdomen/Pelvis (CPT®70491, CPT®71260, and CPT®74177) should be approved for any patient with clinical symptoms or laboratory findings suggesting recurrence.
 - PET can be approved for suspected PTLD recurrence with documentation of new palpable nodes, rising LDH, or rising quantitative EBV PCR

- PET should not be approved for surveillance, but can be approved to clarify inconclusive findings detected on conventional imaging prior to biopsy to establish recurrence. These requests will be forwarded for Medical Director review.
Anaplastic Large Cell Lymphoma (ALCL)

Similar in presentation to Hodgkin lymphoma, and may be indistinguishable until immunocytology and molecular studies are complete.

Initial Staging

- All patients should undergo CT of the Neck/Chest/Abdomen/Pelvis (CPT®70491, CPT®71260, and CPT®74177)

- PET/CT (CPT®78815) is indicated for initial staging of all patients, and can be performed prior to biopsy if necessary for patient scheduling.
 - Whole body PET/CT (CPT®78816) may be approved if there is clinical suspicion of skull or distal lower extremity involvement.

- CT or imaging of other body areas may be indicated for rare patients based on physical findings or PET/CT results. Rarely patients will have primary tumor sites outside the Neck→Pelvis region, and MRI without and with contrast may be substituted for soft tissue extremity or paraspinal primary masses as necessary.

- Bone scan is indicated for patients with bony primary tumors or metastatic disease

Treatment response

- Restaging for treatment response using CT with contrast or MRI without and with contrast of previously involved areas (should be same modality as initial diagnosis if possible) should be performed at the end of induction chemotherapy (commonly 4-6 weeks)

- For patients treated with cytotoxic chemotherapy, either CT of previously involved areas or PET/CT may be approved for treatment response as decisions about chemotherapy drug selection and radiation treatment can be made based on either anatomic or metabolic responses.
 - If CT is performed for primary treatment response, PET/CT can be approved to clarify inconclusive findings detected on conventional imaging
 - If PET/CT is performed for primary treatment response, CT or MRI can be approved to clarify inconclusive findings detected on PET imaging

- Once a particular patient has a negative PET/CT, all subsequent treatment response evaluations should use CT imaging only, including end of therapy evaluation.

- Patients being treated for recurrent or refractory disease with brentuximab vedotin (Adcetris®) may need response assessment performed as often as every 2 cycles of chemotherapy (~every 6 weeks).

Surveillance

- CT of the Neck/Chest/Abdomen/Pelvis (CPT®70491, CPT®71260, and CPT®74177) should be approved for any patient with clinical symptoms suggesting recurrence.
CT with contrast or MRI without and with contrast of all previously involved areas is indicated at 3, 6, 12, and 18 months after therapy is completed.

Bone scan is indicated at 3, 6, 12, and 18 months after therapy is completed for patients with bony primary tumors or metastatic disease.

PET/CT should not be approved for surveillance, but can be approved to clarify inconclusive findings detected on conventional imaging prior to biopsy to establish recurrence. These requests will be forwarded for medical director review.

References
NOTE: Some payors consider PET to be experimental for the treatment of neuroblastoma, and those coverage policies may supersede the recommendations for PET in this section.

Neuroblastoma is the most common extracranial solid tumor of childhood, and may be divided into very low, low, intermediate, and high risk disease based on International Neuroblastoma Risk Group (INRG) Staging System. The treatments for each disease group vary widely and have distinct imaging strategies.

90-95% of neuroblastomas secrete the catecholamine metabolites homovanillic acid (HVA) and vanillylmandelic acid (VMA) in the urine, and Urine HVA/VMA should be performed at every disease evaluation for patients with positive HVA or VMA at diagnosis.

Initial Staging

- CT with contrast of the Neck/Chest/Abdomen/Pelvis (CPT®70491, CPT®71260, and CPT®74177) or MRI without and with contrast of the Neck/Chest/Abdomen/Pelvis (CPT®70543, CPT®71552, CPT®74183, and CPT®72197) for all patients.
- MRI without and with contrast is preferred for evaluation of paraspinal tumors where cord compression is a possibility
- Metabolic imaging in neuroblastoma:
 - 123I-Metaiodobenzylguanidine (MIBG) scintigraphy is the preferred metabolic imaging for neuroblastoma and is positive in 90-95% of neuroblastomas.
 - MIBG imaging does not require prior authorization through eviCore
 - Most MIBG imaging studies are SPECT/CT studies using CT for localization only. Separate diagnostic CT codes should not be approved for this purpose. See Preface-4.6 SPECT/CT Imaging.
 - Occasionally MIBG cannot be performed prior to initiation of therapy. In this circumstance MIBG should be completed within 3 weeks of therapy initiation as the reduction in MIBG avidity in response to chemotherapy is not immediate. Inability to complete MIBG before starting therapy is not an indication to approve PET imaging.

PET imaging is rarely indicated in neuroblastoma but can be approved in the following situations:

- Patients with MIBG-negativity documented at initial diagnosis. For these patients, MIBG should not be repeated and whole body PET (CPT®78816) may be performed rather than MIBG for metabolic tumor assessment.
Patients who are MIBG positive at diagnosis and then become MIBG negative in response to treatment should continue to use MIBG for metabolic imaging indications.
- PET may be approved at major decision points such as hematopoietic stem cell transplantation or surgery if MIBG and CT/MRI findings are inconclusive.

Patients currently receiving medications that may interfere with MIBG uptake that cannot safely be discontinued prior to imaging, including:
- Tricyclic antidepressants (amitriptyline, imipramine, etc.)
- Selective serotonin reuptake inhibitors (SSRI’s, sertraline, paroxetine, escitolapram, etc.)
- Neuroleptics (risperidone, haloperidol, etc.)
- Antihypertensive drugs (alpha or beta blockers, calcium channel blockers)
- Decongestants (phenylephrine, ephedrine, pseudoephedrine)
- Stimulants (methylphenidate, dextroamphetamine, etc.)
- PET should only be approved for this indication when specific documentation of the medication interaction is included with the current PET imaging request. These requests will be forwarded for Medical Director review.

✓ Brain metastases are rare in neuroblastoma, but if clinical signs/symptoms suggest brain involvement, MRI Brain without and with contrast (CPT®70553) is preferred for evaluation.
- MRI Brain of asymptomatic patients with no history of brain metastases is not indicated for neuroblastoma.

Treatment Response Imaging (Risk Group Dependent)

Risk Grouping will not be known at the time of initial staging, but is critical for all imaging decisions after initial staging is complete. **The treating oncologist should always know the patient’s risk grouping.** It is not possible to establish the appropriate imaging plan for a neuroblastoma patient without knowing his/her risk group.

Very Low Risk and Low Risk Neuroblastomas not receiving chemotherapy

✓ All patients can have CT with contrast or MRI without and with contrast of the primary tumor site 6-8 weeks after diagnosis to determine if additional treatment is necessary.
✓ Many patients will be treated with surgical resection only without adjuvant therapy, so patients enter immediately into surveillance.
All Intermediate Risk Neuroblastomas and Very Low Risk or Low Risk Neuroblastomas receiving chemotherapy

Patients generally receive 2-12 cycles of moderate-intensity chemotherapy depending on response to treatment.

Surgical resection may occur prior to or following chemotherapy depending on disease stage. Restaging prior to surgery is appropriate.

✓ Treatment response assessment can be approved as often as every 2 cycles of chemotherapy (~every 6 weeks and at the end of planned treatment) and includes:
 o CT, with contrast of the Chest/Abdomen/Pelvis (CPT®71260, and CPT®74177) or MRI, without and with contrast, (CPT®71552, CPT®74183, and CPT®72197) and other sites with prior measurable disease
 o Urine HVA/VMA (if positive at diagnosis)
 o Bone marrow aspiration/biopsy if positive at diagnosis

✓ MIBG scan (or PET, if MIBG-negative at initial diagnosis) can be approved every 4 cycles and at the end of planned treatment

High Risk Neuroblastomas

This group of patients receives highly aggressive therapy using sequential chemotherapy, surgery, stem cell rescue, radiotherapy, monoclonal antibody (mAb) therapy, and biologic therapy.

✓ Treatment response assessment can be approved as often as every 2 cycles of chemotherapy, mAb, or biologic therapy (~every 6 weeks) and includes:
 o CT, with contrast, of the Chest/Abdomen/Pelvis (CPT®71260, and CPT®74177) or MRI, without and with contrast, (CPT®71552, CPT®74183, and CPT®72197) and other sites with prior measurable disease
 o Urine HVA/VMA (if positive at diagnosis)
 o Bone marrow aspiration/biopsy if positive at diagnosis
 o MIBG scan (or PET, if MIBG-negative at initial diagnosis)

✓ Treatment response assessment is necessary at every change in modality (prior to surgery, HSCT, XRT, and mAb therapy)

✓ More frequent imaging can be approved around the time of surgery if needed for preoperative planning
Surveillance Imaging (Risk Group Dependent)

Very Low Risk and Low Risk Neuroblastomas

- Urine HVA/VMA (if positive at diagnosis) at 1, 2, 3, 6, 9, 12, 18, 24, 36, 48, and 60 months after surgery

- CT with contrast or MRI without and with contrast of the primary tumor site 3, 6, 9, 12, 18, 24, and 36 months after surgery. If negative, no further advanced imaging is necessary.
 - Ultrasound may be sufficient to evaluate the primary tumor site for certain patients and may be approved if requested to replace CT or MRI.

- MIBG is not indicated for surveillance of low risk neuroblastoma, but can be used to clarify findings suspicious for disease recurrence

- Chest CT is not indicated in asymptomatic surveillance imaging of neuroblastoma patients with no prior history of thoracic disease

Intermediate Risk Neuroblastomas

- Urine HVA/VMA (if positive at diagnosis) every month until 12 months after completion of therapy, then at 14, 16, 18, 21, 24, 30, and 36 months after completion of therapy, then annually until 10 years after completion of therapy

- CT with contrast or MRI without and with contrast of the primary tumor and known metastatic sites at 3, 6, 9, 12, 18, 24, and 36 months after completion of therapy. If negative at 36 months, no further advanced imaging is necessary.
 - Ultrasound may be sufficient to evaluate the primary tumor site for certain patients and may be approved if requested to replace CT or MRI

- For all patients with stage 4 or M disease or patients with stage 4S or MS disease AND positive MIBG at completion of therapy, MIBG scan (or PET, if MIBG-negative at initial diagnosis) at 3, 6, 9, 12, 24, and 36 months after completion of therapy.
 - If negative at 36 months, no further MIBG imaging is necessary.
 - For all other intermediate risk neuroblastoma patients, MIBG (or PET, if MIBG-negative at initial diagnosis) during surveillance is not indicated.

- Chest CT is not indicated in asymptomatic surveillance imaging of neuroblastoma patients with no prior history of thoracic disease.

High Risk Neuroblastomas

- Urine HVA/VMA (if positive at diagnosis) at 3, 6, 9, 12, 18, 24, 30, 36, 42, 48, 54, and 60 months after completion of therapy, then annually until 10 years after completion of therapy.
✓ CT with contrast or MRI without and with contrast of the primary tumor site at 3, 6, 9, 12, 18, 24, 30, 36, 48, 54, and 60 months, then annually until 10 years after completion of therapy. If negative at 10 years, no further advanced imaging is necessary.

✓ MIBG scan (or PET, if MIBG-negative at initial diagnosis) at 3, 6, 9, 12, 18, 24, 30, and 36 months after completion of therapy. If negative at 36 months, no further MIBG or PET imaging is necessary.
 o Early detection of recurrence with 123I-MIBG has been shown to improve post-relapse outcomes in high risk neuroblastoma

✓ Chest CT is not indicated in asymptomatic surveillance imaging of neuroblastoma patients with no prior history of thoracic disease.

Staging and Risk Grouping - Neuroblastoma

✓ Neuroblastoma has been traditionally staged according to the International Neuroblastoma Staging System (INSS) which uses age, histology, sites of disease, and MYCN status to determine appropriate therapy:
 o Stage 1: Localized tumor with complete gross excision, with or without microscopic residual disease; representative ipsilateral lymph nodes negative for tumor microscopically (nodes attached to and removed with the primary tumor may be positive)
 o Stage 2A: Localized tumor with incomplete gross resection; representative ipsilateral non-adherent lymph nodes negative for tumor microscopically
 o Stage 2B: Localized tumor with or without complete gross excision, with ipsilateral non-adherent lymph nodes positive for tumor; enlarged contralateral lymph nodes must be negative microscopically
 o Stage 3: Localized tumor with or without complete gross excision, with ipsilateral non-adherent lymph nodes positive for tumor; enlarged contralateral lymph nodes must be negative microscopically
 • The midline is defined as the vertebral column. Tumors originating on one side and crossing the midline must infiltrate to or beyond the opposite side of the vertebral column
 o Stage 4: Any primary tumor with dissemination to distant lymph nodes, bone, bone marrow, liver, skin, and/or other organs (except as defined for Stage 4S)
 o Stage 4S: Infants <1 year of age with localized primary tumor (as defined for Stage 1, 2A or 2B) with dissemination limited to skin, liver, and/or bone marrow with <10% involvement
INSS Neuroblastoma Risk Grouping

Low Risk Neuroblastoma (overall survival 99%, includes the following):

- All stage 1 patients regardless of other factors
- Stage 2A/2B patients meeting all of the following:
 - without \(MYCN\) amplification
 - with \(\geq 50\%\) tumor resection
 - no clinical symptoms
- Stage 4S patients meeting all of the following:
 - without \(MYCN\) amplification
 - with \(\geq 50\%\) tumor resection
 - no clinical symptoms

Intermediate Risk Neuroblastoma (overall survival 96%, includes the following):

- Stage 2A/2B patients with any of the following:
 - \(<50\%\) tumor resection or
 - with clinical symptoms
- Stage 3 patients with any of the following:
 - age \(<18\) months with no high risk features
 - age \(\geq 18\) months with favorable INPC histology
- Stage 4 patients with any of the following:
 - age \(<12\) months with no high risk features
 - age \(\geq 12\) and \(<18\) months with favorable INPC histology AND tumor DNA index \(>1\)
- Stage 4S patients with any of the following:
 - without \(MYCN\) amplification
 - with unfavorable INPC histology
 - tumor DNA index = 1
 - clinical symptoms

High Risk Neuroblastoma (overall survival ~40%, includes the following):

- All patients age \(\geq 18\) months with stage 4 disease regardless of other factors
- All patients with stages 2-4 or 4S disease and \(MYCN\) amplification regardless of other factors
- All stage 3 patients age \(\geq 18\) months with unfavorable INPC histology
- All stage 4 patients age \(\geq 12\) months with unfavorable INPC histology or tumor DNA index = 1

More recent treatment protocols are using the more recently validated International Neuroblastoma Risk Group (INRG) Staging System, which is primarily defined by the complexity of local tumor extension and the presence or absence of distant metastases:

- L1: Localized tumor not involving vital structures as defined by the list of image-defined risk factors and confined to one body compartment
 - Image-defined risk factors include a list of specific imaging findings defining patients less likely to be candidates for complete surgical resection
 - These risk factors involve the encasement of major blood vessels, airway, skull base, costovertebral junction, brachial plexus, spinal canal, or major organs or structures
- L2: Logoregional tumor with presence of one or more image-defined risk factors
- M: Distant metastatic disease (except stage MS)
- MS: Metastatic disease in children younger than 18 months with metastases confined to skin, liver, and/or bone marrow with <10% involvement (MIBG must be negative in bone and bone marrow)

INRG Neuroblastoma Risk Grouping

<table>
<thead>
<tr>
<th>Very Low Risk Neuroblastoma (28% of patients, event-free survival >85%) includes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Stage L1 or L2 maturing ganglioneuroma or intermixed ganglioneuroblastoma</td>
</tr>
<tr>
<td>✓ Stage MS patients meeting all of the following:</td>
</tr>
<tr>
<td>o age <18 months</td>
</tr>
<tr>
<td>o without MYCN amplification</td>
</tr>
<tr>
<td>o without 11q aberration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low Risk Neuroblastoma (27% of patients, event-free survival >75 to ≤85%) includes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Stage L2 patients age <18 months meeting all of the following:</td>
</tr>
<tr>
<td>• any histology except maturing ganglioneuroma or intermixed ganglioneuroblastoma</td>
</tr>
<tr>
<td>• without MYCN amplification</td>
</tr>
<tr>
<td>• without 11q aberration</td>
</tr>
<tr>
<td>✓ Stage L2 patients age ≥18 months meeting all of the following:</td>
</tr>
<tr>
<td>• differentiating neuroblastoma or nodular ganglioneuroblastoma</td>
</tr>
<tr>
<td>• without MYCN amplification</td>
</tr>
<tr>
<td>• without 11q aberration</td>
</tr>
<tr>
<td>✓ Stage M patients meeting all of the following:</td>
</tr>
<tr>
<td>• Age <18 months</td>
</tr>
<tr>
<td>• without MYCN amplification</td>
</tr>
<tr>
<td>• with hyperdiploidy (tumor DNA index >1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate Risk Neuroblastoma (9% of patients, event-free survival ≥50 to ≤75%) includes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Stage L2 patients age <18 months meeting all of the following:</td>
</tr>
<tr>
<td>• any histology except maturing ganglioneuroma or intermixed ganglioneuroblastoma</td>
</tr>
<tr>
<td>• with 11q aberration</td>
</tr>
<tr>
<td>✓ Stage L2 patients age ≥18 months meeting all of the following:</td>
</tr>
<tr>
<td>• neuroblastoma or nodular ganglioneuroblastoma</td>
</tr>
<tr>
<td>• without MYCN amplification</td>
</tr>
<tr>
<td>• with 11q aberration</td>
</tr>
<tr>
<td>✓ Stage M patients meeting all of the following:</td>
</tr>
<tr>
<td>• age <18 months</td>
</tr>
<tr>
<td>• without MYCN amplification</td>
</tr>
<tr>
<td>• with diploidy (tumor DNA index = 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Risk Neuroblastoma (36% of patients, event-free survival <50%, includes the following)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ All patients age ≥18 months with stage M disease regardless of other factors</td>
</tr>
<tr>
<td>✓ All patients with neuroblastoma and MYCN amplification regardless of other factors</td>
</tr>
<tr>
<td>✓ All stage MS patients with 11q aberration regardless of other factors</td>
</tr>
</tbody>
</table>

References – Neuroblastoma

PEDIATRIC ONCOLOGY IMAGING GUIDELINES

PACONC-7~PEDIATRIC RENAL TUMORS

<table>
<thead>
<tr>
<th>PACONC-7</th>
<th>PEDIATRIC RENAL TUMORS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>General Remarks</td>
<td>65</td>
</tr>
<tr>
<td>7.2</td>
<td>Unilateral Wilms Tumor</td>
<td>66</td>
</tr>
<tr>
<td>7.3</td>
<td>Bilateral Wilms Tumor</td>
<td>68</td>
</tr>
<tr>
<td>7.4</td>
<td>Renal Cell Carcinoma</td>
<td>70</td>
</tr>
<tr>
<td>7.5</td>
<td>Clear Cell Sarcoma of the Kidney (CCSK)</td>
<td>72</td>
</tr>
<tr>
<td>7.6</td>
<td>Malignant Rhabdoid Tumor of the Kidney (MRT) and Other Extracranial Sites</td>
<td>74</td>
</tr>
</tbody>
</table>
PACONC-7.1 General Remarks

NOTE: Some payors consider PET imaging to be experimental for the treatment of Wilms tumor and other kidney tumors, and those coverage policies may supersede the recommendations for PET imaging in this section.

A variety of tumors can occur in the pediatric kidney, and include the following:

- Wilms Tumor
 - Favorable Histology (FHWT)
 - Focal Anaplasia (FAWT)
 - Diffuse Anaplasia (DAWT)
 - Bilateral Wilms Tumor (BWT)
- Renal Cell Carcinoma (RCC)
- Clear Cell Sarcoma of the Kidney (CCSK)
- Malignant Rhabdoid Tumor of the Kidney (MRT)
- Other Cancers occurring in the Kidney:
 - Neuroblastoma
 - Primitive Neuroectodermal Tumor
 - Rhabdomyosarcoma
 - Non-Rhabdomyosarcoma Soft Tissue Sarcomas
 - These and other rare tumors have been reported occurring primarily in the kidney and should be imaged according to the guidelines for the specific histologic diagnosis.
PACONC-7.2 Unilateral Wilms Tumor

Initial Staging

Many patients will present with an asymptomatic abdominal mass, and will undergo ultrasound as a primary evaluation. Doppler ultrasound to evaluate for tumor thrombus is no longer necessary unless CT findings are inconclusive, and should not be performed if CT is already completed.

- CT Abdomen and Pelvis with contrast (CPT®74177) is indicated for all unilateral Wilms tumor patients
 - If bilateral renal lesions are noted on ultrasound or CT, MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) should be strongly considered for better characterization

- CT Chest (with or without contrast, as requested) should be completed prior to anesthesia exposure if possible

- MRI Brain without and with contrast (CPT®70553) is indicated for initial staging in the following unilateral Wilms tumor patients for any patient with neurologic signs or symptoms raising suspicion of CNS metastases

- Bone scan is indicated in the following patients any patient with signs or symptoms raising suspicion of bony metastases

- PET is not indicated in the initial staging of any pediatric renal tumor

Treatment Response

A very low risk subset of stage I FHWT will be observed after nephrectomy, and enter directly into surveillance.

The majority of patients will receive chemotherapy with or without XRT, beginning within 14 days of initial surgery.

- CT Chest (with or without contrast, as requested) can be performed every 6-8 weeks during treatment and at the end of planned therapy

- CT Abdomen and Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) can be performed every 6 weeks during treatment and at the end of planned therapy

- PET is not routinely utilized to assess treatment response in Wilms tumor.
 - However, since most Wilms tumors are FDG-avid, rare circumstances may occur where PET imaging should be approved to establish the presence of active disease only when a major therapeutic decision depends on PET avidity. These requests will be forwarded for Medical Director review.
Surveillance Imaging

There are no data to support the use of PET imaging for routine surveillance in any patient with Wilms tumor.

✔ Very low risk FHWT treated with nephrectomy only:

 o CT Chest (with or without contrast, as requested) at 3, 6, 12, and 18 months after nephrectomy

 o CT Abdomen and Pelvis with contrast (CPT®74177) at 3, 6, 12, and 18 months after nephrectomy

 o Surveillance pelvic imaging is indicated in this patient group due to higher risk of recurrence in surgery only treatment

 o Other surveillance imaging should be by Abdominal US (CPT®76700) and CXR

✔ FHWT treated with chemotherapy with or without XRT:

 o CT Chest (with or without contrast, as requested) at 6, 12, 18, 24, 30, and 36 months after completion of all therapy

 o CT Abdomen with contrast (CPT®74160) or MRI Abdomen without and with contrast (CPT®74183) at 6, 12, 18, 24, 30, and 36 months after completion of all therapy

 o Pelvic imaging is not indicated for surveillance unless prior pelvic involvement has been documented

 o Other surveillance imaging should be by Abdominal US and CXR

✔ FAWT or DAWT treated with chemotherapy with or without XRT:

 o CT Chest (with or without contrast, as requested) at 3, 6, 9, 12, 18, 21, and 24 months after completion of all therapy

 o CT Abdomen and Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) at 3, 6, 9, 12, 18, 21, and 24 months after completion of all therapy

 o Other surveillance imaging should be by Abdominal US and CXR

✔ Surveillance imaging with CT of the Chest/Abdomen/Pelvis (CPT®71260 and CPT®74177) following successful treatment for recurrent unilateral Wilms tumor can be approved at 3, 6, 9, and 12 months after completing therapy for recurrence.

 o Surveillance imaging later than 12 months after completing therapy for recurrence should follow the standard timing listed in this surveillance section.
PACONC-7.3 Bilateral Wilms Tumor

Initial Staging

Many patients will present with an asymptomatic abdominal mass, and will undergo ultrasound as a primary evaluation. Doppler ultrasound to evaluate for tumor thrombus is no longer necessary unless CT findings are inconclusive, and should not be performed if CT is already completed.

Patients with bilateral Wilms Tumor may begin therapy without a histologic diagnosis to preserve a localized disease stage and attempt to shrink the tumors to allow for renal-sparing surgical approaches.

- ✓ MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) is the preferred imaging modality for patients with bilateral Wilms tumor
 - o CT Abdomen and Pelvis with contrast (CPT®74177) is often performed prior to discovery of bilateral lesions and should not prevent MRI from being approved
 - o CT Abdomen and Pelvis with contrast (CPT®74177) may be used for patients with a contraindication to MRI
 - • Avoidance of anesthesia exposure is not a contraindication to MRI for these patients
- ✓ CT Chest (with or without contrast, as requested) is indicated in the initial workup of all pediatric renal tumors and should be completed prior to anesthesia exposure if possible
- ✓ MRI Brain without and with contrast (CPT®70553) is indicated for initial staging for any patient with neurologic signs or symptoms raising suspicion of CNS metastases
- ✓ Bone scan is indicated for any patient with signs or symptoms raising suspicion of bony metastases
- ✓ PET is not indicated in the initial staging of any pediatric renal tumor

Treatment Response

- ✓ MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) can be performed every 6 weeks during treatment and at the end of planned therapy
 - o CT Abdomen and Pelvis with contrast (CPT®74177) may be used for patients with a contraindication to MRI
 - o If treating with chemotherapy without a biopsy, disease evaluation is indicated at week 6. If either tumor has not shrunk 50%, then open biopsy is indicated to confirm favorable histology.
 - o If partial nephrectomy still not feasible at week 6, the next disease evaluation is at week 12. Surgical resection of each kidney’s tumor(s) should occur no later than week 12.
✓ CT Chest (with or without contrast, as requested) can be performed every 6 weeks during treatment and at the end of planned therapy

✓ PET is not routinely utilized to assess treatment response in Wilms tumor.
 o However, since most Wilms tumors are FDG-avid, rare circumstances may occur where PET should be approved to establish the presence of active disease only when a major therapeutic decision depends on PET avidity. These requests will be forwarded for Medical Director review.

Surveillance Imaging

✓ CT Chest (with or without contrast, as requested) at 6, 12, 18, 24, 30, and 36 months after completion of all therapy

✓ CT Abdomen with contrast (CPT®74160) or MRI Abdomen without and with contrast (CPT®74183 and CPT®72197) at 3, 6, 12, 18, 24, 30, and 36 months after completion of all therapy
 o “Extra” imaging is supported at 3 months because close surgical margins occur frequently in patients undergoing nephron-sparing surgical approaches, and risk for early local recurrence is higher in this patient group

✓ Pelvic imaging is not indicated for surveillance unless prior pelvic involvement has been documented

✓ Other surveillance imaging should be by abdominal US (CPT®76700) and CXR
 o When CT or MRI Abdomen no longer indicated, patients with bilateral Wilms Tumor should have screening Abdominal ultrasound every 3 months until age 8

✓ Surveillance imaging with CT of the Chest/Abdomen/Pelvis (CPT®71260 and CPT®74177) following successful treatment for recurrent bilateral Wilms tumor can be approved at 3, 6, 9, and 12 months after completing therapy for recurrence.
 o Surveillance imaging later than 12 months after completing therapy for recurrence should follow the standard timing listed in this surveillance section.
PACONC-7.4 Renal Cell Carcinoma

A majority of pediatric cases have a novel subtype involving TFE3 or TFEB translocations, which have a different natural history than “adult type” RCC. 40-45% of pediatric RCC cases have similar histologies to adult RCC (clear cell, papillary, chromophobe, etc.) and imaging decisions will be similar to adult oncology guidelines.

Initial Staging

Many patients will present with an asymptomatic abdominal mass, and will undergo ultrasound as a primary evaluation. Doppler ultrasound to evaluate for tumor thrombus is no longer necessary unless CT findings are inconclusive, and should not be performed if CT is already completed.

- CT Abdomen and Pelvis with contrast (CPT® 74177) is indicated in all patients
 - If bilateral renal lesions are noted on ultrasound or CT, MRI Abdomen and Pelvis without and with contrast (CPT® 74183 and CPT® 72197) should be strongly considered

- CT Chest (with OR without contrast, as requested) should be completed prior to anesthesia exposure if possible

- Other staging imaging should be deferred until a histologic diagnosis is made, by complete nephrectomy for most unilateral renal tumors and biopsy for bilateral renal tumors or inoperable unilateral tumors

- MRI Brain without and with contrast (CPT® 70553) is indicated for any patient with neurologic signs or symptoms raising suspicion of CNS metastases

- Bone scan is indicated for any patient with signs or symptoms raising suspicion of bony metastases

- PET scan is not indicated in the initial staging of any pediatric renal tumor

Treatment Response

Most patients will have surgical resection of all disease at the time of diagnosis and will enter directly into surveillance.

- Patients with residual measurable disease after initial surgery and receiving adjuvant medical therapy can have CT Chest (with or without contrast, as requested) and CT Abdomen with contrast (CPT® 74160) every 3 months during active treatment

- Pelvic imaging is not indicated unless prior pelvic involvement has been documented

- PET is not routinely utilized to assess treatment response in Pediatric RCC.
 - However, since some RCC tumors are FDG-avid, rare circumstances may occur where PET should be approved to establish the presence of active disease only when a major therapeutic decision depends on PET avidity These requests will be forwarded for Medical Director review.
Surveillance Imaging

✓ All Pediatric RCC patients:
 - MRI Brain without and with contrast (CPT®70553) at 6, 12, 18, and 24 after completion of all therapy only for patients with documented CNS metastases or new signs/symptoms suggestive of CNS recurrence.

✓ TFE3 or TFEB subtype:
 - CT Chest (with or without contrast, as requested) at 3, 6, 9, 12, 18, 21, and 24 months after completion of all therapy
 - CT Abdomen with contrast (CPT®74160) or MRI Abdomen without and with contrast (CPT®74183) at 3, 6, 9, 12, 18, 21, and 24 months after completion of all therapy
 - Pelvic imaging is not indicated for surveillance unless prior pelvic involvement has been documented

✓ All other histologies:
 - Surveillance imaging is appropriate as listed in the adult Oncology Imaging Guidelines: [ONC-17.4 Renal Cell Cancer Surveillance](#)
PACONC-7.5 Clear Cell Sarcoma of the Kidney (CCSK)

Be careful not to confuse the diagnosis with clear cell RCC.

Initial Staging

Many patients will present with an asymptomatic abdominal mass, and will undergo ultrasound as a primary evaluation. Doppler ultrasound to evaluate for tumor thrombus is no longer necessary unless CT findings are inconclusive, and should not be performed if CT is already completed.

- CT Abdomen and Pelvis with contrast (CPT® 74177) is indicated in all patients
 - If bilateral renal lesions are noted on ultrasound or CT, MRI Abdomen and Pelvis without and with contrast should be strongly considered
- CT Chest (with or without contrast, as requested) should be completed prior to anesthesia exposure if possible
- Other staging imaging should be deferred until a histologic diagnosis is made, by complete nephrectomy for most unilateral renal tumors and biopsy for bilateral renal tumors or inoperable unilateral tumors
- MRI Brain without and with contrast (CPT® 70553) is indicated for initial staging in all patients with clear cell sarcoma of the kidney
- Bone scan is indicated in all patients with clear cell sarcoma of the kidney
- PET is not indicated in the initial staging of any pediatric renal tumor

Treatment Response

- CT Chest (with or without contrast, as requested) can be performed every 6 weeks during treatment and at the end of planned therapy
- CT Abdomen and Pelvis with contrast (CPT® 74177) or MRI Abdomen and Pelvis without and with contrast (CPT® 74183 and CPT® 72197) can be performed every 6 weeks during treatment and at the end of planned therapy
- MRI Brain without and with contrast (CPT® 70553) can be performed:
 - Every 6 weeks during treatment for patients with CNS metastases at initial staging
 - At the end of planned therapy for all patients with CCSK
- Bone scan at the end of planned therapy
- PET is not routinely utilized to assess treatment response in CCSK.
 - However, since clear cell sarcomas have been shown to be FDG-avid in other anatomic locations, rare circumstances may occur where PET should be approved to establish the presence of active disease only when a major therapeutic decision depends on PET avidity. These requests will be forwarded for Medical Director review.
Surveillance Imaging

- CT Chest (with *or* without contrast, as requested) at 3, 6, 9, 12, 18, 21, and 24 months after completion of all therapy

- CT Abdomen and Pelvis with contrast (CPT® 74177) or MRI Abdomen and Pelvis without and with contrast (CPT® 74183 and CPT® 72197) at 3, 6, 9, 12, 18, 21, and 24 months after completion of all therapy

- MRI Brain without and with contrast (CPT® 70553) at 6, 12, 18, 24, 30, and 36 months after completion of all therapy

- Bone scan at 3, 6, 9, 12, 18, and 24 months after completion of all therapy

- If negative at 36 months, no further advanced imaging is necessary.

- Other surveillance imaging should be by Abdominal US (CPT® 76700) and CXR
PACONC-7.6 Malignant Rhabdoid Tumor of the Kidney (MRT) and Other Extracranial Sites

A highly aggressive histologic variant that can also occur in other locations and all non-CNS sites should follow these guidelines. Primary CNS rhabdoid malignancies should be imaged according to PACONC-4.5 Atypical Teratoid/Rhabdoid Tumors (ATRT).

Initial Staging

Many patients will present with an asymptomatic abdominal mass, and will undergo ultrasound as a primary evaluation. Doppler ultrasound to evaluate for tumor thrombus is no longer necessary unless CT findings are inconclusive, and should not be performed if CT is already completed.

- CT Abdomen and Pelvis with contrast (CPT® 74177) is indicated in all patients
 - If bilateral renal lesions are noted on ultrasound or CT, MRI Abdomen and Pelvis without and with contrast should be strongly considered
- CT Chest (with OR without contrast, as requested) should be completed prior to anesthesia exposure if possible
- Other staging imaging should be deferred until a histologic diagnosis is made, by complete nephrectomy for most unilateral renal tumors and biopsy for bilateral renal tumors or inoperable unilateral tumors
- MRI Brain without and with contrast (CPT® 70553) is indicated for all patients with MRT of the kidney or other non-CNS site
- Bone scan is indicated in all patients with MRT of the kidney or other non-CNS site
- PET is not indicated in the initial staging of any pediatric renal tumor

Treatment Response:

- CT Chest (with or without contrast, as requested) can be performed every 6 weeks during treatment and at the end of planned therapy
- CT Abdomen and Pelvis with contrast (CPT® 74177) or MRI Abdomen and Pelvis without and with contrast (CPT® 74183 and 72197) can be performed every 6 weeks during treatment and at the end of planned therapy
 - If primary site other than kidney, perform CT with contrast or MRI without and with contrast of primary site in place of abdominal and pelvic imaging
- MRI Brain without and with contrast (CPT® 70553) can be performed:
 - Every 6 weeks during treatment for patients with CNS metastases at initial staging
 - At the end of planned therapy for all patients with MRT
- Bone nuclear scan at the end of planned therapy only if positive at initial diagnosis
- PET is not routinely utilized to assess treatment response in MRT.
However, since malignant rhabdoid tumors have been shown to be FDG-avid, rare circumstances may occur where PET should be approved to establish the presence of active disease only when a major therapeutic decision depends on PET avidity. These requests will be forwarded for Medical Director review.

Surveillance Imaging

- CT Chest (with or without contrast, as requested) at 3, 6, 9, 12, 18, 21, and 24 months after completion of all therapy
- CT Abdomen and Pelvis with contrast (CPT® 74177) or MRI Abdomen and Pelvis without and with contrast (CPT® 74183 and CPT® 72197) at 3, 6, 9, 12, 18, 21, 24, 30, and 36 months after completion of all therapy
 - If primary site other than kidney, perform CT with contrast or MRI without and with contrast of primary site in place of abdominal imaging
- MRI Brain without and with contrast (CPT® 70553) at 3, 6, 9, 12, 18, and 24 months after completion of all therapy
- Bone nuclear scan at 3, 6, 9, 12, 18, and 24 months after completion of all therapy only if positive at initial diagnosis
- If negative at 36 months, no further advanced imaging is necessary.
- Other surveillance imaging should be by Abdominal US (CPT® 76700) and CXR

References – Renal Tumors

PACONC-8~PEDIATRIC SOFT TISSUE SARCOMAS

PACONC-8.1 General Remarks

NOTE: Some payors consider PET to be experimental for the treatment of rhabdomyosarcoma and other soft tissue sarcomas, and those coverage policies may supersede the recommendations for PET in this section.

Pediatric soft tissue sarcomas are divided into two groups:

1. Rhabdomyosarcoma (RMS) accounts for ~60% of soft tissue sarcomas in young patients, but only ~25% of soft tissue sarcomas in adolescents
2. Nonrhabdomyosarcoma soft tissue sarcomas (NRSTS) which encompasses all other histologic subtypes

NOTE: Adult Guidelines, ONC-12~Sarcoma and ONC-18~Transitional Cell Cancer do not apply to patients age ≤18 years.

Evaluation of soft tissue masses of uncertain nature prior to biopsy should follow general imaging guidelines in PACMS-7~Mass.

PACONC-8.2 Rhabdomyosarcoma

Initial Staging

✓ Because RMS can arise from any muscle tissue, the presenting symptoms and primary tumor sites vary widely and strongly influence the appropriate imaging decisions
 o Either CT with contrast or MRI without and with contrast is acceptable for primary site imaging of RMS arising in the abdomen or pelvis at the discretion of the treating oncologist.
 o CT with contrast is the preferred primary site imaging modality for RMS arising in the thoracic cavity (not the chest wall).
 o MRI without and with contrast is the preferred primary site imaging modality for RMS occurring in all other anatomic locations, including the chest wall.

✓ In addition, evaluation for lung metastases using CT Chest (with OR without contrast, as requested) is indicated in the initial workup of all pediatric soft tissue sarcomas and should be completed prior to anesthesia exposure if possible

✓ Other staging imaging should be deferred until a histologic diagnosis is made
 o PET/CT is superior to conventional imaging for detection of nodal and bony metastases in pediatric RMS and is indicated in the initial staging of all patients after histologic diagnosis is established
 • Whole body PET/CT (CPT® 78816) is the preferred study for initial staging of RMS
• Bone scan may be substituted for PET imaging if PET not available
 o CT Abdomen and Pelvis with contrast (CPT®74177) is not routinely indicated in the initial metastatic staging of pediatric RMS, but can be approved in the following situations:
 • Evaluation of inconclusive PET findings
 • Primary site of abdomen or pelvis
 • Lower extremity primary sites
 o MRI Brain (CPT®70553) and Spine without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) is indicated for initial staging in the following pediatric RMS:
 • Primary site of paraspinal or paravertebral region
 • PET- or bone scan-avid lesions in skull, neck, vertebrae
 • Any patient with neurologic signs or symptoms raising suspicion of CNS metastases

Treatment Response

✓ CT Chest (with OR without contrast, as requested) can be performed every 6 weeks during treatment and at the end of planned therapy

✓ Primary site imaging:
 o CT with contrast or MRI without and with contrast can be performed every 6 weeks during treatment and at the end of planned therapy
 o Restaging imaging is appropriate after local control surgery (complete or partial resection) is completed

✓ Metastatic site imaging:
 o Repeat imaging of all known metastatic sites using the same modality as during initial staging is appropriate whenever primary site imaging is necessary

✓ PET is not routinely utilized to assess treatment response in RMS, but is indicated in the following circumstances:
 o Response assessment prior to local control surgery or radiation therapy
 o Evaluation of residual mass visible on conventional imaging as part of end of therapy evaluation
 o Response assessment of disease visible on PET but not conventional imaging
 o Once PET has been documented to be negative for a given patient’s cancer or all PET-avid disease has been surgically resected, PET should not be used for continued disease monitoring or surveillance unless one of the exceptions in section **PACONC-1~General Guidelines** applies. These requests will be forwarded for Medical Director review.
 o PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET may be appropriate when results are likely to result in a treatment change for the patient, including a change from active...
treatment to surveillance. These requests will be forwarded for Medical Director review.

Surveillance Imaging:

✓ Primary site imaging:
 o CT with contrast or MRI without and with contrast at 3, 6, 9, 12, 16, 20, 24, 28, 32, 36, 42, and 48 months after completion of all therapy

✓ Metastatic site imaging:
 o All patients: CT Chest (with OR without contrast, as requested) at 3, 6, 9, 12, 16, 20, 24, 28, 32, and 36 months after completion of all therapy
 o Patients with metastatic RMS: CT Chest (with OR without contrast, as requested) and all known metastatic sites at 3, 6, 9, 12, 16, 20, 24, 28, 32, 36, 42, and 48 months after completion of all therapy
 o Nuclear bone scan should be used for surveillance of known bony metastases

✓ PET should not be used for surveillance imaging of RMS unless one of the following applies:
 o Conventional imaging (CT, MRI, US, plain film) reveals findings that are inconclusive or suspicious for recurrence and PET avidity will determine whether biopsy or continued observation is appropriate
 • Residual mass that has not changed in size since the last conventional imaging does **not** justify PET imaging
 • PET avidity in a residual mass at the end of planned therapy is **not** an indication for PET imaging during surveillance.
 o Rare circumstances where obvious clinical symptoms show strong evidence suggesting recurrence and PET would replace conventional imaging modalities
 o These requests will be forwarded for Medical Director review.
PACONC-8.3 Non-Rhabdomyosarcoma Soft Tissue Sarcomas

All soft tissue sarcomas other than RMS fall into this category.

Desmoplastic small round cell tumors and Desmoid tumors (aggressive fibromatosis) in children should also be imaged according to these guidelines.

Initial Staging

✓ Because soft tissue sarcomas can arise from any soft tissue, the presenting symptoms and primary tumor sites vary widely and strongly influence the appropriate imaging decisions.
 o Either CT with contrast or MRI without and with contrast is acceptable for primary site imaging of NRSTS arising in the abdomen or pelvis at the discretion of the treating oncologist.
 o CT with contrast is the preferred primary site imaging modality for NRSTS arising in the thoracic cavity (not the chest wall).
 o MRI without and with contrast is the preferred primary site imaging modality for NRSTS occurring in all other anatomic locations, including the chest wall.

✓ In addition, evaluation for lung metastases using CT Chest (with or without contrast, as requested) is indicated in the initial workup of all pediatric soft tissue sarcomas and should be completed prior to anesthesia exposure if possible

✓ PET/CT (CPT® 78815) may be considered in the following:
 o Desmoplastic small round cell tumor
 o Prior to neoadjuvant chemotherapy
 o Evaluating inconclusive findings found on conventional imaging
 o Whole body PET/CT (CPT® 78816) may be approved if there is clinical suspicion of skull or distal lower extremity involvement.

✓ Nuclear bone scan is used to evaluate for bony metastases but should be omitted if PET is performed

✓ CT Abdomen and Pelvis with contrast (CPT® 74177) is not routinely indicated in the initial metastatic staging of pediatric NRSTS, but can be approved in the following situations:
 o Evaluation of inconclusive PET findings
 o Primary site of abdomen or pelvis
 o Lower extremity primary sites
 o Desmoplastic small round cell tumor

✓ MRI Brain (CPT® 70553) and Spine (Cervical-CPT® 72156, Thoracic-CPT® 72157, Lumbar-CPT® 72158) without and with contrast is indicated for initial staging in the following pediatric NRSTS:
 o Primary site of paraspinal or paravertebral region
 o PET- or nuclear bone scan-avid lesions in skull, neck, vertebrae
Any patient with neurologic signs or symptoms raising suspicion of CNS metastases

Treatment Response

Many patients with NRSTS will be treated with surgical resection alone, and these patients enter immediately into surveillance

- CT Chest (with or without contrast, as requested) can be performed every 6 weeks during treatment and at the end of planned therapy

- Primary site imaging:
 - CT with contrast or MRI without and with contrast can be performed every 6 weeks during treatment and at the end of planned therapy
 - Restaging imaging is appropriate after local control surgery (complete or partial resection) is completed

- Metastatic site imaging:
 - Repeat imaging of all known metastatic sites using the same modality as during initial staging is appropriate whenever primary site imaging is necessary

- PET imaging is not routinely utilized to assess treatment response in NRSTS, but is indicated in the following circumstances if positive at initial diagnosis.
 - Response assessment prior to local control surgery or radiation therapy
 - Evaluation of residual mass visible on conventional imaging as part of end of therapy evaluation
 - Response assessment of disease visible on PET but not conventional imaging
 - Once PET has been documented to be negative for a given patient’s cancer or all PET-avid disease has been surgically resected, PET should not be used for continued disease monitoring or surveillance unless one of the exceptions in section **PACONC-1~General Guidelines** applies. These requests will be forwarded for Medical Director review.
 - PET imaging is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET imaging may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.

Surveillance Imaging:

- Primary site imaging:
 - CT with contrast or MRI without and with contrast at 6, 12, 18, 24, 30, 36, and 60 months after completion of all therapy

- Metastatic site imaging:
 - All patients: CT Chest (with OR without contrast, as requested) and all known metastatic sites at 6, 12, 18, 24, 30, and 36 months after completion of all therapy
 - Nuclear bone scan should be used for surveillance of known bony metastases
Surveillance imaging using CT Chest (CPT®71260) and CT with contrast or MRI without and with contrast of the primary site following successful treatment for recurrent NRSTS can be approved at 3, 6, 9, and 12 months after completing therapy for recurrence.

- Surveillance imaging later than 12 months after completing therapy for recurrence should follow the standard timing listed in this surveillance section.

PET should not be used for surveillance imaging of NRSTS unless one of the following applies:

- Conventional imaging (CT, MRI, US, plain film) reveals findings that are inconclusive or suspicious for recurrence and PET avidity will determine whether biopsy or continued observation is appropriate
 - Residual mass that has not changed in size since the last conventional imaging does not justify PET
 - PET avidity in a residual mass at the end of planned therapy is not an indication for PET imaging during surveillance.

- Rare circumstances where obvious clinical symptoms show strong evidence suggesting recurrence and PET would replace conventional imaging modalities

- These requests will be forwarded for Medical Director review.

References - Soft Tissue Sarcomas

<table>
<thead>
<tr>
<th>PACONC-9</th>
<th>BONE TUMORS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>General Remarks</td>
<td>83</td>
</tr>
<tr>
<td>9.2</td>
<td>Benign Bone Tumors</td>
<td>83</td>
</tr>
<tr>
<td>9.3</td>
<td>Osteogenic Sarcoma (OS)</td>
<td>84</td>
</tr>
<tr>
<td>9.4</td>
<td>Ewing Sarcoma and Primitive Neuroectodermal Tumors (ESFT)</td>
<td>87</td>
</tr>
</tbody>
</table>
PACONC-9.1 General Remarks

These guidelines include both benign and malignant lesions.

Malignant Tumors:
- Osteogenic sarcoma (OS, also called osteosarcoma)
- Ewing Sarcoma Family of Tumors (ESFT)
 - Includes Ewing Sarcomas and Primitive Neuroectodermal Tumors (PNET) occurring outside the CNS

As adults with OS and ESFT are customarily treated using pediatric treatment protocols, it is appropriate to apply the imaging guidelines in this section to adult patients.

All bone tumors should be evaluated by plain X-ray prior to any advanced imaging.

PET does not reliably distinguish between benign and malignant bone tumors and should not be performed prior to biopsy.

PACONC-9.2 Benign Bone Tumors

✔ Osteochondroma
 - Plain X-ray appearance is diagnostic for the majority of patients and advanced imaging is generally unnecessary
 - MRI without and with contrast can be approved after evaluation by the operating surgeon for preoperative planning
 - MRI without contrast OR without and with contrast, as requested, is appropriate for patients with osteochondroma when there is clinical concern for malignant transformation based on new or worsening pain symptoms or a change on a recent plain X-ray

✔ Osteoid osteoma
 - CT without contrast is often the primary study when osteoid osteoma is suspected based on clinical history and plain film findings
 - Some patients will require both CT without contrast as well as MRI without and with contrast to make a definitive diagnosis

✔ Other benign tumors
 - Variety of diagnoses, including osteoid osteoma, osteoblastoma, aneurysmal bone cysts, fibrous dysplasia, chondroblastoma and others,
 - Plain X-ray appearance is diagnostic for many benign bone tumors and advanced imaging is generally unnecessary except for preoperative planning
 - MRI without and with contrast is the primary modality for advanced imaging of bone tumors, and can be approved to help narrow differential diagnoses and determine whether biopsy is indicated
For certain tumors, CT (contrast as requested) provides better visualization of specific bony details, and requests after evaluation by the operating surgeon for preoperative planning should generally be approved

- Surveillance imaging, when indicated, should utilize plain X-ray
 - Some benign bone tumor types carry a risk of malignant degeneration over time, but routine advanced imaging surveillance has not been shown to improve outcomes for these patients
 - MRI without and with contrast can be approved to evaluate new findings on plain X-ray or new/worsening clinical symptoms not explained by a recent plain X-ray

- There are no data to support the use of PET in the evaluation of benign bone tumors, and PET requests should not be approved without biopsy confirmation of a malignancy.

PACONC-9.3 Osteogenic Sarcoma (OS)

Initial Staging

- All bone tumors should be evaluated by plain X-ray prior to any advanced imaging

- MRI without and with contrast is the preferred primary site imaging
 - CT, contrast as requested, can be approved if there is a contraindication to MRI or if requested after evaluation by the operating surgeon to clarify inconclusive MRI findings for preoperative planning
 - MRA and/or CTA may rarely be indicated for complicated surgical resections, and can be approved after evaluation by the operating surgeon to clarify inconclusive MRI findings for preoperative planning
 - Requests for CT, MRA, or CTA should be forwarded for medical director review

- CT Chest (with or without contrast, as requested) is superior to PET/CT for the detection of pulmonary mets, and is indicated in the initial workup of all suspected malignant bone tumors and should be completed prior to anesthesia exposure if possible

- Other staging imaging should be deferred until a histologic diagnosis is made, initially by biopsy, as definitive resection is usually performed after neoadjuvant chemotherapy
 - Distant bony metastases are rare in OS, but cause a significant change in treatment approach.
 - Whole body PET/CT (CPT®78816) is the preferred study for initial staging of OS after histologic diagnosis is established
 - PET has superior sensitivity to bone scan (95% vs. 76%) but equivalent overall diagnostic accuracy (98% vs. 96%) for detection of bony metastases in pediatric OS
 - Nuclear bone scan may be substituted for PET imaging if PET not available
If PET/CT is negative at initial diagnosis, bone scan is preferred for asymptomatic surveillance for bony metastases at time points after local control surgery

- CT Abdomen and Pelvis with contrast (CPT® 74177) is not routinely indicated in the initial metastatic staging of pediatric OS, but can be approved in the following situations:
 - Evaluation of inconclusive PET findings
 - Primary site of abdomen or pelvis

Treatment Response

Most OS patients undergo restaging after 10-12 weeks of neoadjuvant chemotherapy prior to local control surgery to confirm the absence of progressive disease prior to the extended break necessary for postoperative healing.

✔ Restaging at this time point should include:
 - MRI without and with contrast of primary site
 - CT Chest (with OR without contrast, as requested)
 - Whole body PET/CT (CPT® 78816) or bone scan

✔ Following local control surgery, the following imaging guidelines should be used until the end of planned chemotherapy:
 - MRI without and with contrast of primary site ~6 weeks after surgical procedure and at the end of planned chemotherapy
 - Plain X-rays of the primary site and chest every 2 months
 - CT Chest (with *or* without contrast, as requested):
 - Measurable pulmonary metastases: every 6 weeks and at the end of planned chemotherapy
 - No measurable pulmonary metastases: every 4 months and at the end of planned chemotherapy
 - Bone scan (Whole body PET/CT, if positive for distant bone metastases at initial diagnosis) every 4 months and at the end of planned chemotherapy

✔ Patients with metastatic disease do not routinely undergo local control surgery unless metastatic disease has resolved with chemotherapy.
 - CT Chest (with *or* without contrast, as requested) can be performed every 6 weeks during treatment and at the end of planned chemotherapy
 - MRI without and with contrast of primary site can be performed every 6 weeks during treatment and at the end of planned chemotherapy
 - Imaging may be indicated more frequently around the time of surgical resection of primary or metastatic lesions to assess for resectability

✔ PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET imaging may be appropriate when results are likely to
result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.

Surveillance Imaging:

- **Appendicular bone primary tumor site:**
 - Plain X-rays of the primary tumor site should be completed at 3, 6, 9, 12, 18, 24, 30, 36, 48, and 60 months after completion of all therapy
 - MRI is not routinely indicated for surveillance imaging of the primary site but should be approved for the following:
 - To clarify inconclusive findings on plain X-ray
 - To evaluate significant pain symptoms suggestive of primary site recurrence

- **Axial bone primary tumor site:**
 - MRI without and with contrast of the primary tumor site can be approved at 3, 6, 9, 12, 18, 24, 30, 36, 48, and 60 months after completion of all therapy

- **Metastatic disease surveillance:**
 - Patients with localized OS: CT Chest (with OR without contrast, as requested) at 3, 6, 9, 12, 18, and 24 months after completion of all therapy
 - Chest X-ray should be used for pulmonary recurrence surveillance after 24 months, and CT Chest can be approved to clarify inconclusive CXR findings
 - Patients with metastatic OS: CT Chest (with or without contrast, as requested) at 3, 6, 9, 12, 18, 24, 30, 36, 48, and 60 months after completion of all therapy
 - Nuclear bone scan should be used for evaluation of distant bony metastases after completion of all therapy
 - PET/CT has no established role for asymptomatic surveillance of OS, but can be approved in the following circumstances:
 - Conventional imaging reveals findings that are inconclusive or suspicious for recurrence and PET avidity will determine whether biopsy or continued observation is appropriate
 - Rare circumstances where obvious clinical symptoms show strong evidence suggesting recurrence and PET would replace conventional imaging modalities
 - Restaging after biopsy-confirmed recurrence
 - These requests will be forwarded for Medical Director review.
PACONC-9.4 Ewing Sarcoma and Primitive Neuroectodermal Tumors (ESFT)

Initial Staging

✓ All bone tumors should be evaluated by plain X-ray prior to any advanced imaging.

✓ ESFT can also occur in the soft tissues, Soft tissue masses without bony involvement that are ill-defined or non-discrete should be evaluated by limited ultrasound prior to any advanced imaging.

✓ MRI without and with contrast is the preferred primary site imaging
 o CT, contrast as requested, can be approved if there is a contraindication to MRI or if requested after evaluation by the operating surgeon to clarify inconclusive MRI findings for preoperative planning
 o MRI Chest without and with contrast is indicated for chest wall primary tumors, in addition to the CT Chest for pulmonary metastasis detection
 o MRA and/or CTA may rarely be indicated for complicated surgical resections, and can be approved after evaluation by the operating surgeon to clarify inconclusive MRI findings for preoperative planning
 o Requests for CT, MRA, or CTA should be forwarded for medical director review

✓ CT Chest (with or without contrast, as requested) is superior to PET/CT for the detection of pulmonary mets, and is indicated in the initial workup of all suspected malignant bone tumors and should be completed prior to anesthesia exposure if possible.

✓ Other staging imaging should be deferred until a histologic diagnosis is made, initially by biopsy, as definitive resection is performed after neoadjuvant chemotherapy
 o Bone and bone marrow metastases can occur in ESFT, and cause a significant change in treatment approach. PET/CT can replace bone scan and bone marrow biopsy in ESFT patients and is indicated in the initial staging of all ESFT patients after histologic diagnosis is established
 • Whole body PET/CT (CPT®78816) is the preferred study for initial staging of ESFT
 • Bone scan may be substituted for PET imaging if PET not available
 • If PET/CT is negative for bony metastases at initial diagnosis, bone scan is preferred for asymptomatic surveillance at all-time points after completion of therapy
 o CT Abdomen and Pelvis with contrast (CPT®74177) is not routinely indicated in the initial metastatic staging of pediatric ESFT, but can be approved in the following situations:
 • Evaluation of inconclusive PET findings
 • Primary site of abdomen or pelvis
Treatment Response

All ESFT patients undergo restaging after ~12 weeks of neoadjuvant chemotherapy prior to local control surgery to confirm the absence of progressive disease prior to the extended break necessary for postoperative healing.

✓ Restaging at this time point should include:
 - MRI without and with contrast of primary site
 - CT Chest (with or without contrast, as requested)
 - Whole body PET/CT (CPT®78816) or bone scan

✓ Following local control surgery, the following imaging guidelines should be used until the end of planned chemotherapy:
 - MRI without and with contrast of primary site 3 months after surgical procedure and at the end of planned chemotherapy
 - Plain X-rays of the primary site and chest immediately after local control then every 3 months
 - CT Chest (with OR without contrast, as requested):
 - Measurable pulmonary metastases: every 6 weeks and at the end of planned chemotherapy
 - No measurable pulmonary metastases: every 3 months and at the end of planned chemotherapy
 - Whole body PET/CT (CPT®78816) or bone scan at the end of planned chemotherapy

✓ Patients with metastatic disease do not routinely undergo local control surgery unless metastatic disease has resolved with chemotherapy.
 - CT Chest (with or without contrast, as requested) can be performed every 6 weeks during treatment and at the end of planned chemotherapy
 - MRI without and with contrast of primary site can be performed every 6 weeks during treatment and at the end of planned chemotherapy
 - Imaging may be indicated more frequently around the time of surgical resection of primary or metastatic lesions to assess for resectability

✓ PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.

Surveillance Imaging:

✓ Primary tumor site:
 - Appendicular bone primary site: Plain X-rays of the primary tumor site should be completed at 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 54, and 60 months after completion of all therapy, then annually for an additional 5 years
• MRI is not routinely indicated for surveillance imaging of these primary sites after completion of chemotherapy but should be approved for the following:
 ▪ To clarify inconclusive findings on plain X-ray
 ▪ To evaluate significant pain symptoms suggestive of primary site recurrence

 o Axial bone or any soft tissue primary site: CT with contrast or MRI without and with contrast of the primary tumor site can be approved at 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 54, and 60 months after completion of all therapy, then annually for an additional 5 years

✓ Metastatic disease surveillance:
 o Patients with localized ESFT: Chest X-ray should be completed at 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 54, and 60 months after completion of all therapy, then annually for an additional 5 years
 • CT Chest is only indicated to evaluate abnormal CXR findings or pulmonary or chest wall symptoms
 o Patients with metastatic ESFT: CT Chest (with or without contrast as requested) can be approved at 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 54, and 60 months after completion of all therapy, then annually for an additional 5 years
 o Nuclear bone scan should be used for evaluation of distant bony metastases after completion of all therapy
 o PET/CT has no established role for asymptomatic surveillance of ESFT, but can be approved in the following circumstances:
 • Conventional imaging reveals findings that are inconclusive or suspicious for recurrence and PET avidity will determine whether biopsy or continued observation is appropriate
 • Rare circumstances where obvious clinical symptoms show strong evidence suggesting recurrence and PET would replace conventional imaging modalities
 • Restaging after biopsy-confirmed recurrence
 • These requests will be forwarded for Medical Director review.

References – Bone Tumors

Pediatric germ cell tumors include a wide variety of cell types, but the overall treatment strategies are similar for all malignant germ cell tumors. Tumors can occur in testicular, ovarian or extragonadal primary locations.

This section applies to primary germ cell tumors occurring outside the central nervous system in children age ≤15 years at the time of initial diagnosis. For patients age >15 years at diagnosis, overall prognosis is inferior and these patients should be imaged according to adult guidelines in: **ONC-20~Testicular and Nonepithelial Ovarian (Germ Cell) Cancer**.

Sex cord stromal tumors are rare in pediatrics and should be imaged according to adult guidelines in **ONC-20~Testicular and Nonepithelial Ovarian (Germ Cell) Cancer**.

For CNS Germ Cell Tumors, using imaging guidelines in: **PACONC-4.7 CNS Germinomas and Non-Germinomatous Germ Cell Tumors (NGGCT)**.

Initial Staging

- Ovarian, testicular, and abdominal extragonadal GCT should have ultrasound and tumor markers (AFP, β-hCG) as initial evaluation
 - Mediastinal primary tumors should be evaluated by CT Chest with contrast
 - Ovarian masses that are <10 cm in size, have no visible solid component on ultrasound, and have normal tumor markers are almost universally benign and advanced imaging is not necessary unless ultrasound is insufficient for immediate preoperative planning.

- Once a primary mass suspected to be GCT is discovered, initial staging with CT Abdomen/Pelvis with contrast (CPT®74177) is indicated prior to histologic confirmation
 - The degree of abdominal exploration and node sampling necessary for adequate staging is determined in part by imaging findings and is required for preoperative planning
 - Testicular primary tumors can defer abdominal imaging until after histologic confirmation at the discretion of the operating surgeon
 - MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) can be approved to clarify inconclusive CT findings or for patients with a known contraindication to CT contrast

- CT Chest with contrast (CPT®71260) is indicated in the initial workup of all pediatric GCT and should be completed prior to anesthesia exposure if possible
✓ MRI Brain without and with contrast (CPT®70553) can be approved for patients with symptoms suggesting CNS metastases

✓ Nuclear Bone scan should be used for initial evaluation of bony metastases in patients with systemic symptoms or bone pain

✓ There has been no published evidence to date supporting the routine use of PET/CT in the evaluation of pediatric GCT
 o Additionally, PET has been found to have similar efficacy to CT imaging in initial staging of adults with non-seminomatous GCT (the majority of pediatric GCT are non-seminomatous)

Treatment Response

Patients with localized GCT are often cured with surgery alone and do not receive adjuvant therapy. These patients should be imaged using surveillance guidelines after surgery is completed.

Patients receiving adjuvant chemotherapy are usually treated with 4-6 cycles of combination chemotherapy.

✓ The primary method of response assessment is by tumor marker decrease
 o For patients with disease not completely resected at initial diagnosis, repeat imaging with CT Chest/Abdomen/Pelvis (CPT®71260 and CPT®74177) with contrast can be approved every 2 cycles (~every 6 weeks)
 o CT imaging may be indicated more frequently to assess for surgical resectability in patients who have received more than 4 cycles of chemotherapy

✓ CT Chest/Abdomen/Pelvis with contrast (CPT®71260 and CPT®74177) is indicated at the end of planned chemotherapy or following neoadjuvant chemotherapy for initially unresectable tumors

✓ Imaging of any metastatic sites should be approved at the end of planned therapy with the same modality used during initial staging

✓ PET as a marker of treatment response has been shown not to be predictive of patient outcomes in GCT and should not be approved
 o Suspicious lesions seen on conventional imaging should be biopsied to confirm active disease
 o Alternatively, a short-interval CT study can be approved if the relapse risk is determined to be low by the treating physician and biopsy would cause unnecessary morbidity for the patient
Surveillance Imaging

The primary method of surveillance in pediatric GCT is frequent assessment of serum tumor markers

- CT Chest/Abdomen/Pelvis with contrast (CPT® 71260 and CPT® 74177) should be approved for any clinically significant rise in tumor markers or symptoms suggesting recurrent disease

- CT Abdomen/Pelvis with contrast (CPT® 74177) can be approved at 3, 6, 9, 12, 18, and 24 months after completion of all therapy

- Chest X-ray should be completed at 3, 6, 9, 12, 18, and 24 months after completion of all therapy, then annually until 5 years from the end of therapy
 - **Exception:** patients with pulmonary metastases at the time of diagnosis can have CT Chest with contrast (CPT® 71260) approved for surveillance 3, 6, 9, 12, 18, and 24 months after completion of all therapy. Surveillance after 24 months should use CXR.

- Patients with brain or bone metastases should have surveillance imaging on the same schedule as the primary site imaging with the same modality used during initial staging.

References – Germ Cell Tumors

PACONC-11.1 General Remarks

NOTE: Some payors consider PET imaging to be experimental for the treatment of hepatobiliary tumors, and those coverage policies may supersede the recommendations for PET imaging in this section.

Pediatric liver tumors primarily include hepatoblastoma and hepatocellular carcinoma, but hepatic germ cell tumors and primary hepatic sarcomas occur with some frequency. Tumor markers are useful for initial evaluation as well as treatment response, particularly in hepatoblastoma.

Primary hepatic germ cell tumors should follow imaging guidelines in:
PACONC-10 Pediatric Germ Cell Tumors.

Primary hepatic sarcomas should follow imaging guidelines in:
PACONC-8.3 Nonrhabdomyosarcoma Soft Tissue Sarcomas.

Imaging requests relating to liver transplant surgery and surveillance should follow guidelines in section AB-42~Transplant (Liver).

PACONC-11.2 Hepatoblastoma

Initial Staging

Most suspected liver tumors will have ultrasound and tumor markers (AFP, β-hCG, CEA) as initial evaluation.

✓ Ultrasound may be approved even after MRI or CT imaging in order to allow evaluation for tumor thrombus

✓ Once a primary liver mass is discovered, definitive imaging is indicated prior to histologic diagnosis, and may involve any of the following:
 o CT Abdomen/Pelvis with contrast (CPT®74177)
 o Noncontrast imaging is not indicated due to the increased radiation exposure and limited additive benefit
 o MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197)
 o Some tumors may require both MRI and CT during initial evaluation
 o MRA (CPT®74185) or CTA (CPT®74175) Abdomen are often indicated to evaluate vascular invasion

✓ CT Chest (with OR without contrast, as requested) is indicated in the initial workup of all pediatric liver tumors and should be completed prior to anesthesia exposure if possible
MRI Brain without and with contrast (CPT®70553) can be approved only for patients with symptoms suggesting CNS metastases.

Bone scan should be used for initial evaluation of bony metastases only in patients with systemic symptoms or bone pain.

There has been no published evidence to date supporting the routine use of PET/CT imaging in the evaluation of pediatric hepatoblastoma.
- PET/CT should only be considered in very rare circumstances for preoperative planning when MRI and CT scans are insufficient for surgical decision making.
- PET/CT should not be approved in lieu of biopsy of suspicious lesions.
- These requests will be forwarded for Medical Director review.

Treatment Response

Patients with localized hepatoblastoma of pure fetal histology are often cured with surgery alone and do not receive adjuvant therapy. These patients should be imaged using surveillance guidelines after surgery is completed.

Patients receiving adjuvant chemotherapy are usually treated with 2-8 cycles of combination chemotherapy. Tumor marker decrease is important in response assessment but does not eliminate the need for advanced imaging in patients with unresected hepatoblastoma.

For patients with disease not completely resected at initial diagnosis, the following can be approved every 2 cycles (~6 weeks) and at the end of planned therapy for all patients:
- CT Chest (with or without contrast, as requested)
- CT Abdomen/Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197)
 - While the majority of patients will require pelvis imaging at all time points, pelvis imaging may be omitted at the discretion of the ordering physician based on the patient’s specific clinical situation
 - MRA (CPT®74185) or CTA (CPT®74175) Abdomen are often indicated to evaluate vascular invasion
- Imaging of any metastatic sites with the same modality used during initial staging

Imaging may be indicated more frequently to assess for surgical resectability in patients who have received more than 4 cycles of chemotherapy.

Abdominal ultrasound is indicated if tumor thrombus was detected at initial diagnosis.
- If no tumor thrombus was present, continued ultrasound evaluations are not indicated without a specific reason documented in the clinical records

PET/CT should only be considered in very rare circumstances for preoperative planning when MRI and CT scans are insufficient for surgical decision making.
- PET/CT should not be approved in lieu of biopsy of suspicious lesions.
These requests will be forwarded for Medical Director review.

Surveillance Imaging

The primary method of surveillance in hepatoblastoma is frequent assessment of serum tumor markers (primarily AFP).

- No specific imaging is indicated for surveillance in patients with an AFP of >100 ng/mL at diagnosis or recurrence.
 - CT Chest/Abdomen with contrast (CPT®71260 and CPT®74160) can be approved for any clinically significant rise in tumor markers or symptoms suggesting recurrent disease.

- For patients with AFP ≤100 ng/mL at diagnosis or recurrence, the following imaging is appropriate:
 - CT Abdomen with contrast (CPT®74160) should be completed at 3, 6, 9, 12, 15, 18, 21, 24, 28, 32, 36, 42, and 48 months after completion of all therapy.
 - Chest X-ray or CT Chest with contrast (CPT®71260) should be completed at 3, 6, 9, 12, 15, 18, 21, 24, 28, 32, 36, 42, and 48 months after completion of all therapy.
 - Patients with brain or bone metastases should have surveillance imaging on the same schedule as the primary site imaging with the same modality used during initial staging.

- PET/CT has no documented role in the surveillance evaluation of pediatric hepatoblastoma.

PACONC-11.3 Pediatric Hepatocellular Carcinoma

Initial Staging

Most suspected liver tumors will have ultrasound and tumor markers (AFP, β-hCG, CEA) as initial evaluation.

- Ultrasound may be approved even after MRI or CT imaging in order to allow evaluation for tumor thrombus.

- Once a primary liver mass is discovered, definitive imaging is indicated prior to histologic diagnosis, and may involve any of the following:
 - CT Abdomen/Pelvis with contrast (CPT®74177)
 - MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197)
 - Some tumors may require both MRI and CT during initial evaluation
 - MRA (CPT®74185) or CTA (CPT®74175) Abdomen are often indicated to evaluate vascular invasion

- CT Chest (with OR without contrast, as requested) is indicated in the initial workup of all pediatric liver tumors and should be completed prior to anesthesia exposure if possible.
✓ MRI Brain without and with contrast (CPT®70553) can be approved only for patients with symptoms suggesting CNS metastases

✓ Nuclear bone scan should be used for initial evaluation of bony metastases only in patients with systemic symptoms or bone pain

✓ PET/CT should only be considered in very rare circumstances for preoperative planning when MRI and CT are insufficient for surgical decision making.
 o PET/CT should not be approved in lieu of biopsy of suspicious lesions
 o These requests require Medical Director review.

Treatment Response

The majority of hepatocellular carcinoma patients are treated with surgery alone and do not receive adjuvant therapy. These patients should be imaged using surveillance guidelines after surgery is completed.

✓ For patients with disease not completely resected at initial diagnosis, the following can be approved every 2 cycles (~6 weeks) and at the end of planned therapy for all patients:
 o CT Chest (with or without contrast, as requested)
 o CT Abdomen/Pelvis with contrast (CPT®74177) or MRI Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197)
 • While the majority of patients will require pelvis imaging at all time points, pelvis imaging may be omitted at the discretion of the ordering physician based on the patient’s specific clinical situation
 • MRA (CPT®74185) or CTA (CPT®74175) Abdomen are often indicated to evaluate vascular invasion
 o Imaging of any metastatic sites with the same modality used during initial staging

✓ Abdominal ultrasound is indicated if tumor thrombus was detected at initial diagnosis
 o If no tumor thrombus was present, continued ultrasound evaluations are not indicated without a specific reason documented in the clinical records

✓ PET/CT should only be considered in very rare circumstances for preoperative planning when MRI and CT scans are insufficient for surgical decision making.
 o PET/CT should not be approved in lieu of biopsy of suspicious lesions
 o These requests will be forwarded for Medical Director review.

Surveillance Imaging

✓ CT Abdomen with contrast (CPT®74160) can be completed at 3, 6, 9, 12, 18, 24, 36, 48, and 60 months after completion of all therapy

✓ Chest X-ray or CT Chest with contrast (CPT®71260) should be completed at 3, 6, 9, 12, 18, 24, 36, 48, and 60 months after completion of all therapy
Patients with brain or bone metastases should have surveillance imaging on the same schedule as the primary site imaging with the same modality used during initial staging.

PET/CT has no documented role in the surveillance evaluation of pediatric hepatocellular carcinoma

References – Liver Tumors
PACONC-12.1 General Remarks
Retinoblastoma is primarily a disease of the infant and young child, and presents with leukocoria (loss of red reflex).

Detailed evaluation by a physician with significant training and/or experience in retinoblastoma (most commonly a pediatric ophthalmologist or pediatric oncologist) is indicated prior to considering advanced imaging.

Retinoblastoma can be unilateral, bilateral, or trilateral (involving the pineal gland). Extraocular spread of retinoblastoma is rare and generally confined to the brain.

PACONC-12.2 Retinoblastoma Imaging

Initial Staging

✓ MRI Orbits (CPT®70543) and Brain (CPT®70553) without and with contrast can be approved in the initial workup of all patients with retinoblastoma
 ○ Brain imaging may be omitted or deferred at the discretion of the treating ophthalmologist or oncologist

✓ Spinal MRI without and with contrast (Cervical-CPT®72156, Thoracic-CPT®72157, Lumbar-CPT®72158) may be approved if evidence of CNS metastasis on:
 ○ Ophthalmologic exam
 ○ MRI Brain
 ○ Lumbar CSF cytology

✓ CT should generally be avoided in retinoblastoma patients under one year of age or with family history of retinoblastoma due to substantially increased risks for secondary malignancy
 ○ CT of Chest (CPT®71260) and MRI of Abdomen and Pelvis without and with contrast (CPT®74183 and CPT®72197) can be approved for patients with clinical symptoms to suggest metastatic disease

✓ Orbital CT (contrast as requested) and orbital ultrasound can be approved if ordered by the treating ophthalmologist for a specified indication

✓ Nuclear bone scan is the preferred imaging modality for patients with systemic bone pain suggestive of bony metastases

✓ PET has no documented role in the evaluation of retinoblastoma
Treatment Response

- MRI Orbits (CPT®70543) and/or Brain (CPT®70553) can be approved every 2 cycles (~every 6 weeks) and at the end of planned therapy

- For patients with metastatic disease, imaging of known positive areas using the same modality at initial staging can be approved every 2 cycles (~6-8 weeks) and at the end of planned therapy

Surveillance

- The primary method of surveillance in retinoblastoma is examination under anesthesia (EUA), although some older children can be sufficiently evaluated by exam without anesthesia (EWA).

 - Surveillance using advanced imaging is generally not indicated for unilateral retinoblastoma after enucleation or exenteration, but can be approved for evaluation of specific clinical concerns.
 - Patients undergoing ocular salvage treatment approaches can have MRI Orbits (CPT®70543) and Brain (CPT®70553) approved every 6 months for 2 years following completion of therapy.

- Patients with bilateral retinoblastoma or germline mutation in RB1 are at increased risk for subsequent pineoblastoma, so MRI Brain without and with contrast (CPT®70553) can be approved every 6 months for 5 years for the time of diagnosis with retinoblastoma

 - Routine MRI follow up for pineal disease is not currently supported by evidence in unilateral retinoblastoma patients without germline RB1 mutations

References - Retinoblastoma

PACONC-13.1 General Remarks

Pediatric nasopharyngeal carcinoma (NPC) is rare in comparison to adult NPC but is responsible for up to 50% of nasopharyngeal cancers in children and has higher rates of aggressive type III EBV-associated histology than adult NPC.

Standard upfront treatment in pediatric NPC consists of 3-4 cycles of neoadjuvant chemotherapy followed by definitive chemoradiotherapy. Rare patients with lower stage disease may be treated with radiotherapy alone.

PACONC-13.2 Pediatric NPC Imaging

Initial Staging

Quantitative EBV DNA PCR should be measured at initial diagnosis, as it can serve as an effective tumor marker if elevated at initial diagnosis.

- MRI Brain without and with contrast (CPT®70553) and MRI Neck without and with contrast (CPT®70543) is indicated in the initial staging of all pediatric NPC patients
 - CT Head without and with contrast (CPT®70470), CT Maxillofacial without and with contrast (CPT®70488) and/or CT Neck with contrast (CPT®70491) can be approved for patients with documented contraindication to MRI imaging *(avoidance of sedation should not be the sole reason)*
 - Skull base invasion which is common in pediatric NPC and has a dramatic impact on prognosis, and is more easily recognized on MRI imaging

- CT Chest with contrast (CPT®71260) is indicated in initial staging of all patients

- Whole body PET/CT (CPT®78816) is approvable after histologic confirmation of NPC to evaluate for distant bony metastases
 - Bone scan can be used for patients when PET/CT is unavailable

Treatment Response

- MRI Brain without and with contrast (CPT®70553) and MRI Neck without and with contrast (CPT®70543) are indicated for response assessment at the following time points:
 - Following completion of neoadjuvant chemotherapy
 - Following completion of chemoradiotherapy

- CT Chest with contrast (CPT®71260) and whole body PET/CT (CPT®78816) or bone scan are indicated at the following time points:
 - Following completion of neoadjuvant chemotherapy only if positive at initial diagnosis

Version 17.0; Effective 02-16-2015 Pediatric Oncology RETURN
Following completion of chemoradiotherapy

PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.

Surveillance

- **MRI Brain** without and with contrast (CPT® 70553) and **MRI Neck** without and with contrast (CPT® 70543) are indicated at 3, 6, 9, 12, 18, 24, 30, and 36 months following completion of all planned therapy.

- **CT Chest** with contrast (CPT® 71260) is indicated at 3, 6, 9, 12, 18, 24, 30, and 36 months following completion of all planned therapy.

- **Whole body PET/CT** (CPT® 78816) or bone scan are not indicated for routine surveillance in asymptomatic patients but can be approved in the following situations:
 - Clarification of specified inconclusive findings seen on conventional imaging (should not replace biopsy)
 - Restaging to identify sites of disease when EBV PCR levels are abnormally high and conventional imaging is negative
 - Restaging after histologically confirmed recurrence of NPC

These requests will be forwarded for Medical Director review.

References – Nasopharyngeal Carcinoma

PACONC-14.1 General Remarks

Pediatric Adrenocortical Carcinoma (ACC) is rare, with fewer than 25 cases diagnosed each year. Most patients are diagnosed because of virilizing symptoms or detection on screening imaging recommended for specified cancer predisposition syndromes. See: PACONC-2–Cancer Predisposition Syndromes & Screening Strategies

PACONC-14.2 Pediatric ACC Imaging

Initial Staging

✓ CT Abdomen without and with contrast (CPT®74170) or MRI Abdomen without and with contrast (CPT®74183) is indicated in the initial staging of all pediatric ACC patients
✓ CT Chest with contrast (CPT®71260) is indicated in initial staging of all patients
✓ Nuclear bone scan is indicated to evaluate for bony metastases in all patients at initial diagnosis
✓ PET has no documented role in the evaluation and treatment of pediatric ACC.

Treatment Response

The majority of ACC patients are treated with surgery alone and do not receive adjuvant therapy. These patients should be imaged using surveillance guidelines after surgery is completed.

✓ For patients treated with chemotherapy, CT Abdomen without and with contrast (CPT®74170) or MRI Abdomen without and with contrast (CPT®74183) is indicated for response assessment every 2 cycles (~6 weeks) during chemotherapy and following completion of all planned chemotherapy
✓ CT Chest with contrast (CPT®71260) is indicated every 2 cycles (~6 weeks) during chemotherapy and following completion of all planned chemotherapy
✓ Nuclear bone scan is indicated every 2 cycles (~6 weeks) during chemotherapy only if positive for distant metastases at initial diagnosis, and following completion of chemotherapy

Surveillance

✓ CT Abdomen without and with contrast (CPT®74170) or MRI Abdomen without and with contrast (CPT®74183) is indicated at 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 54, and 60 months following completion of all planned therapy
✓ Surveillance CT Chest is not indicated for patients with localized disease at diagnosis

✓ For patients with metastatic ACC, CT Chest with contrast (CPT®71260) is indicated at 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48, 54, and 60 months following completion of all planned therapy

References – Adrenocortical Carcinoma

PACONC-15~Pediatric Melanoma and Other Skin Cancers

Pediatric melanoma is historically rare, but has a steadily rising incidence. Staging is assigned using the AJCC staging for adult melanoma.

Non-melanoma skin cancers are extremely rare in pediatric patients and established age-specific guidelines for management of these tumors do not exist.

Imaging guidelines and treatment approaches are consistent with those used for adults with melanoma and other skin cancers, and these patients should follow imaging guidelines in section ONC-5~Melanomas and Other Skin Cancers.

References – Pediatric Melanoma and Other Skin Cancers

The majority of pediatric salivary gland tumors arise in the parotid gland. Approximately 10-15% of tumors arise in the submandibular, sublingual, or minor salivary glands.

Roughly 75% of pediatric salivary gland tumors are benign, most commonly pleomorphic adenoma.

The most common malignant tumors occurring in the salivary glands are mucoepidermoid carcinoma, adenoid cystic carcinoma, acinic cell carcinoma, undifferentiated carcinoma, and rarely adenocarcinoma.

AJCC staging is used for pediatric as well as adult salivary gland tumors.

Imaging guidelines for malignant pediatric salivary gland tumors are consistent with those used for adults with salivary gland tumors, and these patients should follow imaging guidelines in section **ONC-4-Salivary Gland Cancers**.

References

Less than 1% of pediatric breast lesions are malignant, and advanced imaging is generally not recommended without histologic confirmation of malignancy.

- Mammography has limited utility in pediatric breast mass evaluation due to the high mammographic breast density in this age group, and the risk of the radiation exposure outweighs the benefit of this modality.

- Ultrasound (CPT®76641 and CPT®76642) is the primary modality used for evaluation of pediatric breast masses.

- MRI has very limited utility in evaluation of pediatric breast masses prior to biopsy, but may be indicated in rare cases for surgical planning when ultrasound is non-diagnostic.
 - All advanced imaging requests for pediatric breast masses should be forwarded for Medical Director review.

References

PACONC-18~Pediatric Histiocytic Disorders

<table>
<thead>
<tr>
<th>PACONC-18</th>
<th>Pediatric Histiocytic Disorders</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>General Remarks</td>
<td>109</td>
</tr>
<tr>
<td>18.2</td>
<td>Langerhans Cell Histiocytosis (LCH)</td>
<td>109</td>
</tr>
<tr>
<td>18.3</td>
<td>Hemophagocytic Lymphohistiocytosis (HLH)</td>
<td>112</td>
</tr>
<tr>
<td>18.4</td>
<td>Non-Langerhans Cell Histiocytoses</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Juvenile Xanthogranuloma (JXG)</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Rosai-Dorfman Disease (RDD)</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Erdheim-Chester Disease (ECD)</td>
<td>114</td>
</tr>
</tbody>
</table>
PACONC-18.1 General Remarks

The majority of histiocytic disorders occurring in the pediatric population are either Langerhans Cell Histiocytosis (LCH) or Hemophagocytic Lymphohistiocytosis (HLH).

The Non-Langerhans cell histiocytoses encompass a variety of diseases, and have limited imaging considerations except as specified later in this section.

PACONC-18.2 Langerhans Cell Histiocytosis (LCH)

Includes a heterogeneous group of disorders formerly known by other names, including histiocytosis X, eosinophilic granuloma, Letterer-Siwe Disease, Hand-Schuller-Christian Disease, and diffuse reticuloendotheliosis

Most common sites of involvement are skin, bones, liver, lung, and pituitary, though other sites are possible.

Initial imaging studies

- For all patients:
 - Chest X-ray
 - Abdominal US (CPT® 76700)
 - Skeletal survey
 - PET should not be used to replace skeletal survey in LCH

- MRI Brain without and with contrast (CPT® 70553) for any of the following:
 - Headaches or visual or neurologic disturbances
 - Polyuria/polydipsia or other endocrine abnormalities
 - Skull or craniofacial (including jaw) bone involvement
 - Otorrhea or hearing loss (may substitute CT Temporal Bone if requested)
 - Other signs or symptoms suggesting intracranial involvement, including neurodegeneration syndrome

- CT Chest with or without contrast, as requested, for any of the following:
 - Abnormal CXR
 - Symptoms of pulmonary involvement and normal CXR

- MRI Abdomen without and with contrast (CPT® 74183) for any of the following:
 - Elevated liver function tests (usually >5X upper limit of normal)
 - Abnormalities seen on Abdominal ultrasound
 - CT Abdomen with contrast (CPT® 74160) can be substituted if requested by ordering physician to avoid general anesthesia
✓ MRI Spine without and with contrast (Cervical-CPT® 72156, Thoracic-CPT® 72157, Lumbar-CPT® 72158) for any of the following:
 o Vertebral lesions seen on skeletal survey
 o Clinical symptoms (including back pain) suggesting spinal involvement and negative skeletal survey

✓ Whole body PET/CT (CPT® 78816) for any of the following:
 o Multifocal bone involvement seen on skeletal survey
 o Bone pain and negative skeletal survey
 o There is to date no evidence that PET/CT offers any diagnostic advantage for soft tissue lesions in LCH (including skin lesions)

Treatment Response
Patients with localized or single site disease are often treated only with local therapies or observed, and should be imaged according to surveillance guidelines

Patients receiving systemic therapy will usually undergo treatment for ~12 months. Treatment response is assessed using any modalities showing disease at initial diagnosis after ~6 weeks of treatment.
 o Those with persistent measurable disease will usually be evaluated again after week 12 of therapy
 o Once PET/CT shows no remaining FDG-avid lesions, additional PET imaging is not indicated
 o As a general rule, both PET/CT and CT with contrast should not be approved for simultaneous treatment response evaluation without specific documentation showing that both are necessary

Following the initial phase, patients can have treatment response evaluation every ~3 months while receiving active treatment.
 o Shorter interval imaging can be approved for documented signs or symptoms concerning for disease progression

✓ All patients should have the following studies at the end of planned therapy:
 o Chest X-ray
 o Abdominal ultrasound (CPT® 76700)
 o Skeletal survey
 o Repeat of all additional imaging studies positive at initial workup (except PET)

✓ PET is generally not indicated during active treatment for recurrent pediatric cancer. In rare circumstances, PET may be appropriate when results are likely to result in a treatment change for the patient, including a change from active treatment to surveillance. These requests will be forwarded for Medical Director review.
Surveillance Imaging:

Surveillance imaging is determined by areas of disease involvement.

- **Bone involvement**
 - Plain x-ray of involved bony areas at 6 weeks, then at 3 and 6 months after completion of therapy
 - Additional films are not necessary unless symptoms suggest new or recurrent disease
 - PET is not indicated for surveillance, but can be considered to evaluate patients with recurrent disease
 - Temporal bone involvement does not require advanced imaging during surveillance unless dictated by clinical symptoms

- **Pulmonary involvement**
 - CXR every 6-12 months after completion of therapy
 - CT Chest (contrast as requested) can be approved for new abnormalities on CXR or new pulmonary symptoms with a negative CXR

- **CNS involvement**
 - CNS LCH has a particularly high rate of refractory and recurrent disease, and requires longer imaging surveillance
 - MRI Brain without and with contrast (CPT®70553) is indicated for patients with previously documented measurable intracranial lesions at 6 weeks, 3 months, and 6 months after completion of all therapy.
 - If negative at that time, continued surveillance is indicated at 1, 2, 4, 7, and 10 years after completion of all planned therapy
 - If residual measurable intracranial lesions are present at 6 months, imaging can be repeated every 3 months until negative or unchanged on two consecutive studies, at which time the schedule in the previous bullet should begin
 - MRI Brain without and with contrast (CPT®70553) is indicated for patients with documented hypothalamic-pituitary dysfunction at 1, 2, 4, 7, and 10 years after completion of all planned therapy
 - Intraspinal lesions are rare, but should be imaged according to the same guidelines as brain imaging using MRI without and with contrast of all involved spine levels

- **Liver involvement**
 - Persistent liver involvement is rare, and imaging after completion of LCH therapy will be highly individualized depending on degree of liver dysfunction and plans for supportive therapy or liver transplant
 - Most patients with liver involvement will receive surveillance Abdominal ultrasound (CPT®76700) every 6-12 months
PACONC-18.3 Hemophagocytic Lymphohistiocytosis (HLH)

Advanced imaging requests for HLH should be forwarded for medical director review.

There are no standard imaging studies required for the diagnosis and initial evaluation of HLH. Advanced imaging studies may be necessary to assess organ dysfunction as HLH commonly affects the liver, spleen, and bone marrow, and less commonly the kidneys, lungs, and brain.

 ✓ Common studies that may be indicated in the initial evaluation of HLH include:
 - Abdominal ultrasound (CPT® 76700)
 - CT Abdomen and/or Pelvis (contrast as requested)
 - MRI Abdomen (CPT® 74183) and/or Pelvis (CPT® 72197) without and with contrast
 - CXR
 - CT Chest with contrast (CPT® 71260)
 - MRI Brain without and with contrast (CPT® 70553)

It is not required to perform ultrasound or plain film in a stepwise fashion if CT or MRI is planned as patients with HLH can deteriorate rapidly.

 ✓ There is no established standard role for PET in the diagnosis or treatment response evaluation of HLH
 - Secondary HLH is very difficult to treat if the primary cause is not concurrently treated
 - In these cases, if conventional imaging has been completed and is unrevealing, whole body PET/CT (CPT® 78816) can be considered for the purpose of identifying a site for tissue diagnosis of a primary source of infection or malignancy
 - If a malignancy is identified as the inciting factor for HLH, additional imaging decisions for that malignancy should be based on the appropriate diagnosis-specific guidelines
PACONC-18.4 Non-Langerhans Cell Histiocytoses

Includes diagnoses such as juvenile xanthogranuloma (JXG), sinus histiocytosis with lymphadenopathy (Rosai-Dorfman disease, RDD), and Erdheim-Chester disease (ECD).

In general, these are localized cutaneous or nodal disease without need for regular advanced imaging, but important exceptions are listed in this section.

Juvenile Xanthogranuloma (JXG)

- Generally involves only skin or cervical nodes, and involutes spontaneously, imaging of involved nodal areas may be appropriate using CT with contrast of appropriate area
- Systemic JXG is associated with multiorgan involvement and imaging studies may include:
 - MRI Brain (CPT® 70553) and/or Orbits (CPT® 70543) without and with contrast
 - CT Neck (CPT® 70491), Chest (CPT® 71260), and/or Abdomen (CPT® 74160) with contrast
- There is no established role for PET in the diagnosis or treatment of JXG

Rosai-Dorfman Disease (RDD)

Characterized by bulky adenopathy (usually cervical) with frequent systemic involvement

Appropriate imaging studies may include:

- MRI Brain (CPT® 70553) and/or Orbits (CPT® 70543) without and with contrast
- Nuclear bone scan
- CT Neck (CPT® 70491), Chest (CPT® 71260) and/or Abdomen/Pelvis (CPT® 74177) with contrast
- There is no established role for PET in the diagnosis or treatment of RDD, but whole body PET/CT(CPT® 78816) may be approved if PET/CT will provide critical information for major treatment decision making that cannot be obtained using conventional imaging or biopsy.
 - Because of the paucity of evidence for PET in RDD, PET/CT should not be used to replace tissue confirmation for any clinical scenario in RDD.
 - These requests will be forwarded for Medical Director review.
- There is no established role for routine surveillance imaging of asymptomatic patients after treatment for RDD, but CT with contrast can be approved for evaluation of new or worsening clinical symptoms suggesting recurrent disease
Erdheim-Chester Disease (ECD)

An aggressive histiocytic disorder with overall poor prognosis that is characterized by long bone involvement with frequent spread to multiple organs

Initial imaging studies

Appropriate imaging studies at initial diagnosis may include:

- MRI Brain (CPT®70553) and/or Orbits (CPT®70543) without and with contrast
- Nuclear bone scan
- Whole body PET/CT (CPT®78816)
- CT Neck (CPT®70491), Chest (CPT®71260) and/or Abdomen/Pelvis (CPT®74177) with contrast
- CTA or MRA of Chest (CPT®72175 or CPT®71555) or Abdomen (CPT®74175 or CPT®74185) to evaluate vascular tree involvement
- Cardiac MRI without and with contrast (CPT®75561)

Treatment Response

- Most patients will receive systemic therapy. Treatment response imaging can be approved every 3 months during active treatment using any modalities showing disease at initial diagnosis, including PET/CT.
 - Once PET/CT shows no remaining FDG-avid lesions, additional PET imaging is not indicated unless conventional imaging studies are inconclusive and acute treatment decisions will be made based on PET results. These requests will be forwarded for Medical Director review.

Surveillance Imaging:

- Surveillance imaging can be approved every 3 months for the first year after completion of treatment, then every 6 month using any modalities showing disease at initial diagnosis.
- PET/CT is not supported for routine surveillance of ECD, but can be approved if conventional imaging is inconclusive for suspected recurrence. These requests will be forwarded for Medical Director review.

References – Histiocytic Disorders

PACONC-19~Long Term Pediatric Cancer Survivors

<table>
<thead>
<tr>
<th>PACONC-19</th>
<th>Long Term Pediatric Cancer Survivors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>General Remarks</td>
<td>117</td>
</tr>
<tr>
<td>19.2</td>
<td>Cardiotoxicity and Echocardiography</td>
<td>118</td>
</tr>
<tr>
<td>19.3</td>
<td>Second Malignant Neoplasms (SMN)</td>
<td>119</td>
</tr>
<tr>
<td>19.4</td>
<td>Osteonecrosis in Long Term Cancer Survivors</td>
<td>121</td>
</tr>
</tbody>
</table>
PACONC-19~Long Term Pediatric Cancer Survivors

PACONC-19.1 General Remarks

This section applies to patients who have passed the end of the surveillance imaging period for their specific cancer, or 5 years after completion of therapy, whichever occurs first.

As these are long term survivors, many patients falling under this guideline section will have reached adult age. However, these guidelines relate specifically to late effects of childhood cancer treatment and should be applied to all long term childhood cancer survivors regardless of current age.

The Children’s Oncology Group has published comprehensive guidelines for the management of long-term childhood cancer survivors, and these are available at: http://www.survivorshipguidelines.org.

A summary of cancer treatment should be available for all patients in this category and should generally include, at minimum:

✔ Type of cancer and stage

✔ Dates of diagnosis, recurrence, cancer-related surgeries, beginning and end dates of chemotherapy, radiotherapy, and/or stem cell transplant

✔ Protocol number used for treatment and cumulative chemotherapy drug dose exposures

✔ Cumulative radiation dose, fraction number, modality, and field exposure

Annual detailed history and complete physical examination is a critical component of cancer survivorship care and along with laboratory testing serves as the primary method of screening for the majority of late effects.

✔ Advanced imaging for asymptomatic screening is not routinely indicated except as specified in this section.
PACONC-19.2 Cardiotoxicity and Echocardiography

Exposure to cardiotoxic anthracycline chemotherapy agents is common in pediatric oncology due to the high success rate of this drug class in the treatment of pediatric cancers. Screening echocardiography (CPT® 93306) for life is indicated after exposure to anthracycline chemotherapy or cardiac exposure to radiotherapy.

Drugs include the following:

- Doxorubicin
- Daunorubicin
- Idarubicin
- Epirubicin
- Mitoxantrone

Cardiac risk is due to the age of the patient at the time of administration and the cumulative drug exposure expressed as doxorubicin equivalent mg/m².

- **Patients age <1 year** at time of first exposure:
 - Echocardiography **every year** for any cardiac radiotherapy exposure or ≥200 mg/m² cumulative doxorubicin equivalent exposure.
 - Echocardiography **every 2 years** for <200 mg/m² cumulative doxorubicin equivalent exposure and no cardiac radiotherapy exposure.

- **Patients ages 1-4 years** at time of first exposure:
 - Echocardiography **every year** for any cardiac radiotherapy exposure or ≥300 mg/m² cumulative doxorubicin equivalent exposure
 - Echocardiography **every 2 years** for 100-300 mg/m² cumulative doxorubicin equivalent exposure and no cardiac radiotherapy exposure
 - Echocardiography **every 5 years** for <100 mg/m² cumulative doxorubicin equivalent exposure and no cardiac radiotherapy exposure

- **Patients age ≥5 years** at time of first exposure:
 - Echocardiography **every year** for ≥300 mg/m² cumulative doxorubicin equivalent exposure regardless of cardiac radiotherapy exposure
 - Echocardiography **every 2 years** for 200-300 mg/m² cumulative doxorubicin equivalent exposure and no cardiac radiotherapy exposure
 - Echocardiography **every 2 years** for <300 mg/m² cumulative doxorubicin equivalent exposure and cardiac radiotherapy exposure
 - Echocardiography **every 5 years** for <200 mg/m² cumulative doxorubicin equivalent exposure and no cardiac radiotherapy exposure

- **Patients of any age with abnormal ventricular function:**
 - Echocardiography **every year**
PACONC-19.3 Second Malignant Neoplasms (SMN)

Breast Cancer
Clinical breast exam every 6 months supplemented with:

✓ Annual Breast MRI (CPT®77059) and annual mammogram is recommended beginning at age 25 or 8 years after completion of radiotherapy (whichever occurs later) for patients receiving a cumulative radiation exposure of ≥20 Gy in the following fields:
 o Chest (thorax)
 o Whole lung
 o Mediastinal
 o Axilla
 o Mini-mantle, mantle, or extended mantle
 o Total (TLI) or subtotal (SLTI) lymphoid irradiation
 o Total body irradiation (TBI)

✓ Annual Breast MRI (CPT®77059) and annual mammogram is recommended beginning at age 25 or 8 years after completion of radiotherapy (whichever occurs later) for patients receiving ≥12 Gy of whole lung radiation for treatment of Wilms tumor

Brain Tumors
These are associated with radiation exposure to the brain and with neurofibromatosis.

✓ Routine surveillance of completely asymptomatic patients is not supported by evidence.

✓ MRI Brain without and with contrast (CPT®70553) should be approved if requested for any patient with history of brain radiotherapy and new neurologic symptoms including simple headache.

✓ For patients with history of brain radiotherapy and persistent neurologic symptoms, annual MRI Brain without and with contrast (CPT®70553) can be approved.
Colorectal Cancer

Colonoscopy is recommended every 5 years beginning at age 35 or 10 years after radiation exposure (whichever is later) for patients with ≥30 Gy radiation exposure to the following fields:

- Thoracic, Lumbar, Sacral, or Whole Spine
- Extended mantle
- Hepatic, Renal, Spleen, RUQ or LUQ
- Paraaortic or Flank/Hemiabdomen
- Whole Abdomen
- Inverted Y
- Pelvic
- Vaginal
- Prostate or Bladder
- Iliac, Inguinal, or Femoral
- Total (TLI) or subtotal (SLTI) lymphoid irradiation
- Total body irradiation (TBI)

Colonoscopy is also recommended every 5 years beginning at age 35 or 10 years after radiation exposure (whichever is later) for patients with:

- Personal history of ulcerative colitis, GI malignancy, adenomatous polyps, or hepatoblastoma
- Familial polyposis
- Family history of colorectal cancer or polyps in a first degree (parent or sibling) relative

While the American Cancer Society recently added computed tomographic colonography (CTC) (AKA “Virtual Colonoscopy”) as an acceptable option for colorectal cancer screening of average-risk adults, the National Comprehensive Cancer Network and United States Preventive Services Task Force concluded that data was too premature to warrant its use in screening. *Colonoscopy remains the preferred screening modality for survivors at highest risk of colorectal cancer.*
Osteonecrosis is associated with chemotherapy and radiation exposure during treatment for ALL, NHL, and allogeneic HSCT in pediatrics. Osteonecrosis occurs primarily in hips, knees, and ankles. Osteoradionecrosis of the jaw can occur in patients receiving radiotherapy to the mandible or maxilla; those receiving ≥40 Gy are at highest risk. Although unusual, it can also occur in any bone without symptoms. It is rare in other disease types.

✓ Plain films of symptomatic areas are indicated prior to advanced imaging.

✓ Routine bone density screening using DEXA or Quantitative CT screening has not been well normalized in the pediatric population, but imaging can be approved for those with symptoms to suggest bone density issues
 o DEXA or Quantitative CT screening is generally not recommended until age 18 unless a specific intervention will be planned based on the imaging results.

✓ Serial advanced imaging is not indicated in osteonecrosis without specific documentation regarding how the advanced imaging will change current patient management
 o When advanced imaging is necessary for acute management decisions, MRI without contrast of the affected joint(s) can be approved.
 o Surveillance imaging of asymptomatic patients to detect osteonecrosis has not been shown to impact patient outcomes, and it is not standard to alter treatment based on imaging findings alone without symptoms.
 • Follow up MRI of incidentally discovered ON findings in asymptomatic patients has not been shown to impact patient outcomes and is not necessary

✓ See PACONC-3.2 Acute Lymphoblastic Leukemia (ALL) for information on imaging osteonecrosis in ALL patients during active treatment.

References